
Python Handbook: A Comprehensive
Guide
By Attila Asghari
2025

Purpose of This Handbook
This handbook is designed to help learners understand Python efficiently, without
overwhelming explanations. It serves as a fast reference guide that focuses on essential
concepts and syntax. Unlike traditional programming books that dive deep into theory,
this handbook aims to be a practical, no-nonsense guide that lets you get straight to
coding.

Who Is This Handbook For?
This handbook is for:

Beginners who are just starting with Python.
Intermediate learners who want to reinforce their knowledge.
Students looking for a quick reference while learning Python in school or university.
Self-learners who prefer an efficient and structured way to grasp Python concepts.

How to Use This Handbook
One of the key purposes of this book is flexibility. You don’t have to follow it in order—
you can jump between topics based on your needs. Each section is designed to be
self-contained so that you can quickly find what you’re looking for without unnecessary
distractions.

Acknowledgments
Writing this handbook has been an incredible journey, and I couldn’t have done it
without the support and encouragement of the people around me. I’d like to take a
moment to express my gratitude to those who made this book possible. First and
foremost, I want to thank my amazing girlfriend, Amanda (Asal) Karimi, for her
unwavering support, patience, and encouragement throughout this process. Her belief in
me kept me motivated, even when the challenges seemed overwhelming. Thank you for
being my inspiration and my rock. Finally, thank you to the readers of this book. Your

curiosity and eagerness to learn are what drive me to share my knowledge. I hope this
book helps you on your Python journey and inspires you to create amazing things.

About the Author
My name is Attila Asghari, and I am a final-year Computer Engineering student. I have a
deep interest in Artificial Intelligence (AI), Machine Learning (ML), Embedded Systems,
and Data Science. While learning Data Science, I realized that I needed a resource to
quickly grasp Python without unnecessary explanations—something like a structured
cheat sheet. Since I couldn’t find exactly what I was looking for, I decided to create this
handbook.

Prerequisites
This book assumes no prior programming experience. However, familiarity with basic
computer operations (e.g., installing software, navigating files) will be helpful. To get
started, you'll need:

A computer with Python installed (Python 3.x is recommended).
A text editor or IDE (Integrated Development Environment) for writing and running
Python code. Popular options include:

Jupyter Notebook (used to write this book)
VS Code
PyCharm
IDLE (comes with Python)

If you're new to Python, don't worry! The first section of the book will guide you through
the basics step by step.

Tools and Setup
To follow along with the examples in this book, you'll need to set up your Python
environment. Here's how to get started:

1. Install Python:

Download the latest version of Python from the official website:
https://www.python.org/downloads/
Follow the installation instructions for your operating system.

2. Install Jupyter Notebook (optional but recommended):

Open a terminal or command prompt and run:
pip install notebook
Launch Jupyter Notebook by running:

https://www.python.org/downloads/

jupyter-notebook
3. Install a Text Editor or IDE:

If you prefer a lightweight editor, install VS Code or Sublime Text.
If you want a full-featured IDE, install PyCharm.

4. Verify Your Setup:

Open a terminal or command prompt and type:
python --version
You should see the installed Python version (e.g., Python 3.10.0).

Once your environment is set up, you're ready to start coding!

Links to IDE and Text Editors

Name Link

Visual Studio Code https://code.visualstudio.com/

Sublime Text https://www.sublimetext.com/

PyCharm https://www.jetbrains.com/pycharm/

Jupyter https://jupyter.org/

Table of Contents

Beginner Python

1. Introduction
2. Variables & Data Types
3. Working With Strings
4. Working With Numbers
5. Getting Input From Users
6. Lists
7. List Functions
8. Tuples
9. Functions

10. Return Statement
11. If Statements
12. If Statements & Comparisons
13. Dictionaries
14. While Loop
15. Building a Guessing Game
16. For Loops
17. Exponent Function

https://code.visualstudio.com/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://jupyter.org/

18. 2D Lists & Nested Loops
19. Comments
20. Try / Except
21. Reading Files
22. Writing to Files
23. Modules & Pip
24. Classes & Objects
25. Object Functions
26. Inheritance

Intermediate Python

1. Intro
2. Lists
3. Tuples
4. Dictionaries
5. Sets
6. Strings
7. Collections
8. Itertools
9. Lambda Functions

10. Exceptions and Errors
11. Logging
12. JSON
13. Random Numbers
14. Decorators
15. Generators
16. Threading vs Multiprocessing
17. Multithreading
18. Multiprocessing
19. Function Arguments
20. The Asterisk (*) Operator
21. Shallow vs Deep Copying
22. Context Managers

1. Introduction to Python
Python is a high-level, interpreted programming language known for its simplicity and
readability. It was created by Guido van Rossum and first released in 1991. Python is
widely used in various fields, including web development, data science, artificial
intelligence, automation, and more.

Why Learn Python?

Easy to Learn: Python’s syntax is straightforward and resembles English, making it
beginner-friendly.
Versatile: It can be used for web development, data analysis, machine learning,
automation, and more.
Large Community: Python has a vast community of developers, so finding help or
libraries is easy.
Cross-Platform: Python runs on Windows, macOS, Linux, and other platforms.

Installing Python

1. Download Python: Visit the official Python website (python.org) and download the
latest version for your operating system.

2. Install Python: Follow the installation instructions. Make sure to check the box that
says "Add Python to PATH" during installation.

3. Verify Installation: Open a terminal or command prompt and type python --
version or python3 --version . If Python is installed correctly, it will display the
version number.

Writing Your First Python Program

Python programs are written in .py files. You can use any text editor or an Integrated
Development Environment (IDE) like PyCharm, VS Code, or Jupyter Notebook.

Let’s write a simple program:

This is a comment. Comments are ignored by the Python interpreter.
print("Hello, World!")

Hello, World!

Explanation:
print() is a built-in function that outputs text to the console.
"Hello, World!" is a string, which is a sequence of characters enclosed in

quotes.

Running a Python Program

4. Save the file with a .py extension, e.g., hello.py .
5. Open a terminal or command prompt.
6. Navigate to the folder where the file is saved.
7. Run the program by typing python hello.py or python3 hello.py .

Python Syntax Basics

In [7]:

https://www.python.org/

Indentation: Python uses indentation (spaces or tabs) to define blocks of code.
Unlike other languages, indentation is mandatory in Python.

 if 5 > 2:
 print("Five is greater than two!")

Five is greater than two!

Case Sensitivity: Python is case-sensitive, so myVariable and myvariable are
treated as different names.
Comments: Use # for single-line comments and ''' or """ for multi-line
comments.

 # This is a single-line comment
 '''
 This is a
 multi-line comment
 '''

'\nThis is a\nmulti-line comment\n'

Python Modes

8. Interactive Mode: You can run Python code directly in the terminal by typing
python or python3 . This is useful for testing small snippets of code.
$ python
>>> print("Hello, Python!")
Hello, Python!

9. Script Mode: Save your code in a .py file and execute it as a script.

2. Variables & Data Types

What Are Variables?

A variable is a named location in memory used to store data. Think of it as a container
that holds a value. In Python, you don’t need to declare the type of a variable explicitly;
Python automatically infers the type based on the value assigned.

Rules for Naming Variables

1. Variable names must start with a letter (a-z, A-Z) or an underscore (_).
2. The rest of the name can contain letters, numbers, or underscores.
3. Variable names are case-sensitive (myVar and myvar are different).
4. Avoid using Python keywords (e.g., if , else , for , while , etc.) as variable

names.

In [11]:

In [14]:

Out[14]:

Assigning Values to Variables

Use the = operator to assign a value to a variable.

x = 10 # x is an integer
name = "Alice" # name is a string
is_student = True # is_student is a boolean

Data Types in Python

Python has several built-in data types. The most common ones are:

1. Integers (int): Whole numbers, positive or negative.

 age = 25

2. Floats (float): Decimal numbers.

 height = 5.9

3. Strings (str): Sequences of characters enclosed in single or double quotes.

 name = "Alice"
 greeting = 'Hello, World!'

4. Booleans (bool): Represents True or False .

 is_student = True
 is_working = False

5. Lists (list): Ordered, mutable collections of items.

 fruits = ["apple", "banana", "cherry"]

6. Tuples (tuple): Ordered, immutable collections of items.

 coordinates = (10.0, 20.0)

7. Dictionaries (dict): Unordered collections of key-value pairs.

 person = {"name": "Alice", "age": 25}

In [25]:

In [36]:

In [38]:

In [41]:

In [44]:

In [47]:

In [50]:

In [55]:

8. Sets (set): Unordered collections of unique items.

 unique_numbers = {1, 2, 3, 4}

Dynamic Typing

Python is dynamically typed, meaning you don’t need to declare the type of a variable.
The type is determined at runtime based on the value assigned.

x = 10 # x is an integer
x = "Hello" # Now x is a string

Checking Data Types

You can use the type() function to check the data type of a variable.

x = 10
print(type(x)) # Output: <class 'int'>

y = "Python"
print(type(y)) # Output: <class 'str'>

<class 'int'>
<class 'str'>

Type Conversion

You can convert one data type to another using built-in functions like int() ,
float() , str() , etc.

x = 10
y = float(x) # Convert integer to float
print(y) # Output: 10.0

z = str(x) # Convert integer to string
print(z) # Output: "10"

10.0
10

Variable Naming Conventions

Use descriptive names (e.g., user_age instead of x).
Use lowercase letters and underscores for variable names (snake_case).
Avoid single-letter names unless they’re used in a small scope (e.g., loop counters).

Example Program

In [58]:

In [61]:

In [64]:

In [67]:

Variables and Data Types
name = "Alice"
age = 25
height = 5.9
is_student = True

Displaying values and types
print("Name:", name, type(name))
print("Age:", age, type(age))
print("Height:", height, type(height))
print("Is Student:", is_student, type(is_student))

Name: Alice <class 'str'>
Age: 25 <class 'int'>
Height: 5.9 <class 'float'>
Is Student: True <class 'bool'>

3. Working With Strings
A string is a sequence of characters enclosed in single (') or double (") quotes.
Strings are one of the most commonly used data types in Python, and Python provides
many built-in methods to work with them.

Creating Strings

You can create strings using single or double quotes:

string1 = "Hello, World!"
string2 = 'Python is fun!'

If your string contains a single quote, use double quotes, and vice versa:

string3 = "It's a beautiful day."
string4 = 'He said, "Python is awesome!"'

For multi-line strings, use triple quotes (''' or """):

multi_line_string = """This is a
multi-line
string."""

String Operations

1. Concatenation: Combine strings using the + operator.

In [70]:

In [74]:

In [77]:

In [82]:

 first_name = "Alice"
 last_name = "Smith"
 full_name = first_name + " " + last_name
 print(full_name) # Output: Alice Smith

Alice Smith

2. Repetition: Repeat a string using the * operator.

 laugh = "Ha"
 print(laugh * 3) # Output: HaHaHa

HaHaHa

3. Length: Use the len() function to get the length of a string.

 text = "Python"
 print(len(text)) # Output: 6

6

4. Indexing: Access individual characters in a string using their index. Python uses
zero-based indexing.

 text = "Python"
 print(text[0]) # Output: P
 print(text[3]) # Output: h

P
h

Negative indexing starts from the end:

 print(text[-1]) # Output: n
 print(text[-2]) # Output: o

n
o

5. Slicing: Extract a substring using slicing. The syntax is [start:end:step] .

 text = "Python Programming"
 print(text[0:6]) # Output: Python
 print(text[7:18]) # Output: Programming
 print(text[:6]) # Output: Python (from start to index 5)
 print(text[7:]) # Output: Programming (from index 7 to end)
 print(text[::2]) # Output: Pto rgamn (every second character)

In [85]:

In [88]:

In [91]:

In [94]:

In [97]:

In [100…

Python
Programming
Python
Programming
Pto rgamn

String Methods

Python provides many built-in methods to manipulate strings. Here are some commonly
used ones:

6. upper() : Converts the string to uppercase.

 text = "Python"
 print(text.upper()) # Output: PYTHON

PYTHON

7. lower() : Converts the string to lowercase.

 text = "Python"
 print(text.lower()) # Output: python

python

8. strip() : Removes leading and trailing whitespace.

 text = " Python "
 print(text.strip()) # Output: Python

Python

9. replace() : Replaces a substring with another substring.

 text = "Hello, World!"
 print(text.replace("World", "Python")) # Output: Hello, Python!

Hello, Python!

10. split() : Splits the string into a list of substrings based on a delimiter.

 text = "Python is fun"
 print(text.split(" ")) # Output: ['Python', 'is', 'fun']

['Python', 'is', 'fun']

In [105…

In [108…

In [113…

In [116…

In [120…

11. find() : Returns the index of the first occurrence of a substring. Returns -1 if not
found.

 text = "Python is fun"
 print(text.find("is")) # Output: 7

7

12. count() : Counts the number of occurrences of a substring.

 text = "Python is fun and Python is easy"
 print(text.count("Python")) # Output: 2

2

13. startswith() and endswith() : Checks if a string starts or ends with a specific
substring.

 text = "Python is fun"
 print(text.startswith("Python")) # Output: True
 print(text.endswith("fun")) # Output: True

True
True

String Formatting

14. Using f-strings (Python 3.6+): Embed expressions inside string literals.

 name = "Alice"
 age = 25
 print(f"My name is {name} and I am {age} years old.")
 # Output: My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

15. Using format() : Insert values into placeholders {} .

 name = "Alice"
 age = 25
 print("My name is {} and I am {} years old.".format(name, age))
 # Output: My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

16. Using % (older style):

In [123…

In [126…

In [131…

In [134…

In [137…

 name = "Alice"
 age = 25
 print("My name is %s and I am %d years old." % (name, age))
 # Output: My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

Escape Characters

Escape characters are used to include special characters in strings:

\n : Newline
\t : Tab
\\ : Backslash
\" : Double quote
\' : Single quote

Example:

print("Hello,\nWorld!") # Output: Hello,
 # World!

Hello,
World!

Example Program

Working with Strings
text = "Python is fun!"

String operations
print("Length:", len(text))
print("First character:", text[0])
print("Last character:", text[-1])
print("Substring:", text[0:6])

String methods
print("Uppercase:", text.upper())
print("Lowercase:", text.lower())
print("Replace 'fun' with 'awesome':", text.replace("fun", "awesome"))

String formatting
name = "Alice"
age = 25
print(f"My name is {name} and I am {age} years old.")

In [140…

In [143…

In [146…

Length: 14
First character: P
Last character: !
Substring: Python
Uppercase: PYTHON IS FUN!
Lowercase: python is fun!
Replace 'fun' with 'awesome': Python is awesome!
My name is Alice and I am 25 years old.

4. Working With Numbers
Python supports various types of numbers, including integers, floats, and complex
numbers. In this section, we’ll focus on integers and floats, which are the most
commonly used numeric types.

Types of Numbers

1. Integers (int): Whole numbers, positive or negative, without decimals.

 x = 10
 y = -5

2. Floats (float): Numbers with decimal points.

 pi = 3.14
 temperature = -10.5

3. Complex Numbers: Numbers with a real and imaginary part (e.g., 3 + 4j). We
won’t cover these in detail here.

Basic Arithmetic Operations

Python supports the following arithmetic operations:

Addition (+)
Subtraction (-)
Multiplication (*)
Division (/)
Floor Division (//)
Modulus (%)
Exponentiation (**)

In [152…

In [155…

a = 10
b = 3

print(a + b) # Output: 13 (Addition)
print(a - b) # Output: 7 (Subtraction)
print(a * b) # Output: 30 (Multiplication)
print(a / b) # Output: 3.333... (Division)
print(a // b) # Output: 3 (Floor Division - rounds down to the nearest integer
print(a % b) # Output: 1 (Modulus - remainder of division)
print(a ** b) # Output: 1000 (Exponentiation - a raised to the power of b)

13
7
30
3.3333333333333335
3
1
1000

Order of Operations (PEMDAS/BODMAS)

Python follows the standard mathematical order of operations: 4. Parentheses 5.
Exponents 6. Multiplication and Division (from left to right) 7. Addition and Subtraction
(from left to right)

Example:

result = 10 + 3 * 2 ** 2 # 2 ** 2 = 4 → 3 * 4 = 12 → 10 + 12 = 22
print(result) # Output: 22

22

You can use parentheses to change the order of operations:

result = (10 + 3) * 2 ** 2 # 10 + 3 = 13 → 2 ** 2 = 4 → 13 * 4 = 52
print(result) # Output: 52

52

Type Conversion Between Numbers

You can convert between integers and floats using the int() and float() functions:

x = 10
y = 3.14

Convert float to integer
print(int(y)) # Output: 3 (truncates the decimal part)

In [159…

In [162…

In [165…

In [168…

Convert integer to float
print(float(x)) # Output: 10.0

3
10.0

Common Math Functions

Python provides a built-in math module for advanced mathematical operations. To use
it, you need to import the module:

import math

Here are some commonly used functions:

8. math.sqrt() : Square root.

 print(math.sqrt(16)) # Output: 4.0

4.0

9. math.pow() : Exponentiation.

 print(math.pow(2, 3)) # Output: 8.0 (2 raised to the power of 3)

8.0

10. math.floor() : Rounds a number down to the nearest integer.

 print(math.floor(3.7)) # Output: 3

3

11. math.ceil() : Rounds a number up to the nearest integer.

 print(math.ceil(3.2)) # Output: 4

4

12. math.fabs() : Absolute value.

 print(math.fabs(-10)) # Output: 10.0

10.0

13. math.pi and math.e : Constants for π and e.

In [171…

In [175…

In [178…

In [181…

In [184…

In [187…

 print(math.pi) # Output: 3.141592653589793
 print(math.e) # Output: 2.718281828459045

3.141592653589793
2.718281828459045

Handling Large Numbers

Python can handle very large integers without any issues:

large_number = 123456789012345678901234567890
print(large_number) # Output: 123456789012345678901234567890

123456789012345678901234567890

For very large floats, you can use scientific notation:

scientific_number = 1.23e6 # 1.23 * 10^6
print(scientific_number) # Output: 1230000.0

1230000.0

Example Program

Working with Numbers
a = 10
b = 3

Arithmetic operations
print("Addition:", a + b)
print("Subtraction:", a - b)
print("Multiplication:", a * b)
print("Division:", a / b)
print("Floor Division:", a // b)
print("Modulus:", a % b)
print("Exponentiation:", a ** b)

Order of operations
result = (a + b) * 2 ** 2
print("Result of (a + b) * 2 ** 2:", result)

Type conversion
x = 3.14
print("Convert float to int:", int(x))
print("Convert int to float:", float(a))

Math module
import math
print("Square root of 16:", math.sqrt(16))
print("2 raised to the power of 3:", math.pow(2, 3))

In [190…

In [193…

In [196…

In [199…

print("Floor of 3.7:", math.floor(3.7))
print("Ceiling of 3.2:", math.ceil(3.2))
print("Absolute value of -10:", math.fabs(-10))
print("Value of pi:", math.pi)

Addition: 13
Subtraction: 7
Multiplication: 30
Division: 3.3333333333333335
Floor Division: 3
Modulus: 1
Exponentiation: 1000
Result of (a + b) * 2 ** 2: 52
Convert float to int: 3
Convert int to float: 10.0
Square root of 16: 4.0
2 raised to the power of 3: 8.0
Floor of 3.7: 3
Ceiling of 3.2: 4
Absolute value of -10: 10.0
Value of pi: 3.141592653589793

5. Getting Input From Users
In Python, you can interact with users by taking input from them using the input()
function. This allows your program to dynamically respond to user-provided data.

The input() Function

The input() function reads a line of text from the user and returns it as a string. You
can optionally provide a prompt to guide the user.

Syntax:

input(prompt)

prompt : A string that is displayed to the user before they enter their input
(optional).

Example:

name = input("Enter your name: ")
print("Hello,", name)

Hello, Attila

In []:

In [211…

When you run this program, it will display "Enter your name: " and wait for the
user to type something. After the user presses Enter, the input is stored in the
variable name .

Important Notes About input()

1. Input is Always a String: The input() function always returns the user’s input as
a string, even if the user enters a number.

 age = input("Enter your age: ")
 print(type(age)) # Output: <class 'str'>

<class 'str'>

2. Converting Input to Other Data Types: If you need the input as a number (e.g.,
integer or float), you must explicitly convert it using int() or float() .

 age = int(input("Enter your age: "))
 print(type(age)) # Output: <class 'int'>

<class 'int'>

Be careful when converting input, as invalid input (e.g., entering text when a number is
expected) will cause an error. We’ll cover error handling later.

Example: Simple Calculator

Let’s create a simple program that takes two numbers from the user and performs basic
arithmetic operations:

Simple Calculator
num1 = float(input("Enter the first number: "))
num2 = float(input("Enter the second number: "))

print("Addition:", num1 + num2)
print("Subtraction:", num1 - num2)
print("Multiplication:", num1 * num2)
print("Division:", num1 / num2)

Addition: 110.0
Subtraction: -72.0
Multiplication: 1729.0
Division: 0.2087912087912088

Handling Multiple Inputs

In [214…

In [217…

In [221…

If you want the user to enter multiple values at once, you can use the split() method
to separate the input into a list of strings. Then, convert them to the desired data type.

Example:

Taking multiple inputs
values = input("Enter two numbers separated by a space: ").split()
num1 = float(values[0])
num2 = float(values[1])

print("Sum:", num1 + num2)

Sum: 30.0

If the user enters 10 20 , the program will output Sum: 30 .

Example: User Registration

Here’s a program that collects user information and displays it back:

User Registration
name = input("Enter your name: ")
age = int(input("Enter your age: "))
email = input("Enter your email: ")

print("\nUser Details:")
print(f"Name: {name}")
print(f"Age: {age}")
print(f"Email: {email}")

User Details:
Name: attila
Age: 23
Email: attilaasghari@gmail.com

Error Handling for User Input

When converting user input to numbers, invalid input (e.g., entering text instead of a
number) will cause a ValueError . We’ll cover error handling in detail later, but here’s a
basic example using a try-except block:

try:
 age = int(input("Enter your age: "))
 print("Your age is:", age)
except ValueError:
 print("Invalid input! Please enter a valid number.")

Invalid input! Please enter a valid number.

In [226…

In [229…

In [232…

Example Program

Here’s a complete example that combines everything we’ve learned:

Getting Input From Users
name = input("Enter your name: ")
age = int(input("Enter your age: "))
height = float(input("Enter your height in meters: "))

print("\nUser Profile:")
print(f"Name: {name}")
print(f"Age: {age}")
print(f"Height: {height} meters")

Simple calculation
birth_year = 2023 - age
print(f"You were born in {birth_year}.")

User Profile:
Name: attila
Age: 23
Height: 1.85 meters
You were born in 2000.

6. Lists
A list is a versatile and widely used data structure in Python. It is an ordered, mutable
(changeable) collection of items. Lists can store elements of different data types,
including numbers, strings, and even other lists.

Creating Lists

Lists are created by enclosing elements in square brackets [] , separated by commas.

Syntax:

my_list = [element1, element2, element3]

Examples:

List of integers
numbers = [1, 2, 3, 4, 5]

List of strings
fruits = ["apple", "banana", "cherry"]

Mixed data types

In [239…

In []:

In [246…

mixed_list = [1, "apple", 3.14, True]

Nested list (list inside a list)
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Accessing List Elements

You can access elements in a list using their index. Python uses zero-based indexing,
meaning the first element has an index of 0 .

Syntax:

my_list[index]

Examples:

fruits = ["apple", "banana", "cherry"]

print(fruits[0]) # Output: apple
print(fruits[1]) # Output: banana
print(fruits[2]) # Output: cherry

apple
banana
cherry

Negative Indexing: You can also use negative indices to access elements from the
end of the list.

 print(fruits[-1]) # Output: cherry (last element)
 print(fruits[-2]) # Output: banana (second last element)

cherry
banana

Slicing: You can extract a sublist using slicing. The syntax is [start:end:step] .

 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

 print(numbers[2:5]) # Output: [3, 4, 5] (elements from index 2 to 4)
 print(numbers[:4]) # Output: [1, 2, 3, 4] (elements from start to index 3)
 print(numbers[5:]) # Output: [6, 7, 8, 9] (elements from index 5 to end)
 print(numbers[::2]) # Output: [1, 3, 5, 7, 9] (every second element)

[3, 4, 5]
[1, 2, 3, 4]
[6, 7, 8, 9]
[1, 3, 5, 7, 9]

In []:

In [254…

In [257…

In [260…

Modifying Lists

Lists are mutable, meaning you can change their elements after creation.

1. Updating an Element:

 fruits = ["apple", "banana", "cherry"]
 fruits[1] = "blueberry"
 print(fruits) # Output: ["apple", "blueberry", "cherry"]

['apple', 'blueberry', 'cherry']

2. Adding Elements:
append() : Adds an element to the end of the list.

 fruits.append("orange")
 print(fruits) # Output: ["apple", "blueberry", "cherry", "orange"]

['apple', 'blueberry', 'cherry', 'orange']

insert() : Inserts an element at a specific index.

 fruits.insert(1, "mango")
 print(fruits) # Output: ["apple", "mango", "blueberry", "cherry", "orange"

['apple', 'mango', 'blueberry', 'cherry', 'orange']

3. Removing Elements:
remove() : Removes the first occurrence of a specific value.

 fruits.remove("blueberry")
 print(fruits) # Output: ["apple", "mango", "cherry", "orange"]

['apple', 'mango', 'cherry', 'orange']

pop() : Removes and returns the element at a specific index (or the last element if
no index is provided).

 removed_fruit = fruits.pop(1)
 print(removed_fruit) # Output: mango
 print(fruits) # Output: ["apple", "cherry", "orange"]

mango
['apple', 'cherry', 'orange']

del : Deletes an element or a slice of elements.

In [263…

In [268…

In [271…

In [276…

In [279…

 del fruits[0]
 print(fruits) # Output: ["cherry", "orange"]

['cherry', 'orange']

4. Clearing the List:
clear() : Removes all elements from the list.

 fruits.clear()
 print(fruits) # Output: []

[]

List Operations

1. Concatenation: Combine two lists using the + operator.

 list1 = [1, 2, 3]
 list2 = [4, 5, 6]
 combined = list1 + list2
 print(combined) # Output: [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6]

2. Repetition: Repeat a list using the * operator.

 repeated = [1, 2] * 3
 print(repeated) # Output: [1, 2, 1, 2, 1, 2]

[1, 2, 1, 2, 1, 2]

3. Length: Use the len() function to get the number of elements in a list.

 numbers = [1, 2, 3, 4, 5]
 print(len(numbers)) # Output: 5

5

4. Membership: Check if an element exists in a list using the in keyword.

 fruits = ["apple", "banana", "cherry"]
 print("banana" in fruits) # Output: True
 print("mango" in fruits) # Output: False

True
False

In [284…

In [287…

In [290…

In [293…

In [296…

In [299…

List Methods

Here are some commonly used list methods:

1. sort() : Sorts the list in ascending order (or alphabetically for strings).

 numbers = [3, 1, 4, 1, 5, 9]
 numbers.sort()
 print(numbers) # Output: [1, 1, 3, 4, 5, 9]

[1, 1, 3, 4, 5, 9]

2. reverse() : Reverses the order of the list.

 numbers.reverse()
 print(numbers) # Output: [9, 5, 4, 3, 1, 1]

[9, 5, 4, 3, 1, 1]

3. copy() : Returns a shallow copy of the list.

 new_numbers = numbers.copy()
 print(new_numbers) # Output: [9, 5, 4, 3, 1, 1]

[9, 5, 4, 3, 1, 1]

4. index() : Returns the index of the first occurrence of a value.

 print(numbers.index(4)) # Output: 2

2

5. count() : Returns the number of occurrences of a value.

 print(numbers.count(1)) # Output: 2

2

Example Program

Working with Lists
fruits = ["apple", "banana", "cherry"]

Accessing elements
print("First fruit:", fruits[0])
print("Last fruit:", fruits[-1])

Modifying lists
fruits.append("orange")

In [302…

In [307…

In [310…

In [313…

In [316…

In [319…

fruits.insert(1, "mango")
fruits.remove("banana")
removed_fruit = fruits.pop(2)

List operations
print("Fruits:", fruits)
print("Number of fruits:", len(fruits))
print("Is 'apple' in the list?", "apple" in fruits)

Sorting and reversing
fruits.sort()
print("Sorted fruits:", fruits)
fruits.reverse()
print("Reversed fruits:", fruits)

First fruit: apple
Last fruit: cherry
Fruits: ['apple', 'mango', 'orange']
Number of fruits: 3
Is 'apple' in the list? True
Sorted fruits: ['apple', 'mango', 'orange']
Reversed fruits: ['orange', 'mango', 'apple']

7. List Functions
Python provides a variety of built-in functions and methods to work with lists. These
functions allow you to manipulate, analyze, and transform lists efficiently. In this section,
we’ll explore some of the most commonly used list functions and methods.

Common List Functions

1. len() : Returns the number of elements in a list.

 numbers = [1, 2, 3, 4, 5]
 print(len(numbers)) # Output: 5

5

2. max() : Returns the largest element in a list.

 print(max(numbers)) # Output: 5

5

3. min() : Returns the smallest element in a list.

 print(min(numbers)) # Output: 1

In [323…

In [326…

In [330…

1

4. sum() : Returns the sum of all elements in a list (only for numeric lists).

 print(sum(numbers)) # Output: 15

15

5. sorted() : Returns a new sorted list without modifying the original list.

 unsorted = [3, 1, 4, 1, 5, 9]
 sorted_list = sorted(unsorted)
 print(sorted_list) # Output: [1, 1, 3, 4, 5, 9]
 print(unsorted) # Output: [3, 1, 4, 1, 5, 9] (original list unchanged)

[1, 1, 3, 4, 5, 9]
[3, 1, 4, 1, 5, 9]

6. any() : Returns True if at least one element in the list is True (or truthy).

 boolean_list = [False, True, False]
 print(any(boolean_list)) # Output: True

True

7. all() : Returns True if all elements in the list are True (or truthy).

 print(all(boolean_list)) # Output: False

False

Common List Methods

8. append() : Adds an element to the end of the list.

 fruits = ["apple", "banana"]
 fruits.append("cherry")
 print(fruits) # Output: ["apple", "banana", "cherry"]

['apple', 'banana', 'cherry']

9. extend() : Adds all elements of an iterable (e.g., list, tuple) to the end of the list.

 fruits.extend(["orange", "mango"])
 print(fruits) # Output: ["apple", "banana", "cherry", "orange", "mango"]

['apple', 'banana', 'cherry', 'orange', 'mango']

In [333…

In [336…

In [339…

In [342…

In [347…

In [350…

10. insert() : Inserts an element at a specific index.

 fruits.insert(1, "blueberry")
 print(fruits) # Output: ["apple", "blueberry", "banana", "cherry", "orange",

['apple', 'blueberry', 'banana', 'cherry', 'orange', 'mango']

11. remove() : Removes the first occurrence of a specific value.

 fruits.remove("banana")
 print(fruits) # Output: ["apple", "blueberry", "cherry", "orange", "mango"]

['apple', 'blueberry', 'cherry', 'orange', 'mango']

12. pop() : Removes and returns the element at a specific index (or the last element if
no index is provided).

 removed_fruit = fruits.pop(2)
 print(removed_fruit) # Output: cherry
 print(fruits) # Output: ["apple", "blueberry", "orange", "mango"]

cherry
['apple', 'blueberry', 'orange', 'mango']

13. clear() : Removes all elements from the list.

 fruits.clear()
 print(fruits) # Output: []

[]

14. index() : Returns the index of the first occurrence of a value.

 numbers = [10, 20, 30, 20, 40]
 print(numbers.index(20)) # Output: 1

1

15. count() : Returns the number of occurrences of a value.

 print(numbers.count(20)) # Output: 2

2

16. sort() : Sorts the list in place (modifies the original list).

 numbers.sort()

In [353…

In [358…

In [361…

In [366…

In [369…

In [372…

In [375…

 print(numbers) # Output: [10, 20, 20, 30, 40]

[10, 20, 20, 30, 40]

You can also sort in descending order:

 numbers.sort(reverse=True)
 print(numbers) # Output: [40, 30, 20, 20, 10]

[40, 30, 20, 20, 10]

17. reverse() : Reverses the order of the list in place.

 numbers.reverse()
 print(numbers) # Output: [10, 20, 20, 30, 40]

[10, 20, 20, 30, 40]

18. copy() : Returns a shallow copy of the list.

 new_numbers = numbers.copy()
 print(new_numbers) # Output: [10, 20, 20, 30, 40]

[10, 20, 20, 30, 40]

List Comprehensions

List comprehensions provide a concise way to create lists. They are often used to apply
an operation to each element in a list or to filter elements.

Syntax:

[expression for item in iterable if condition]

Examples: 19. Create a list of squares:

 squares = [x ** 2 for x in range(1, 6)]
 print(squares) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

20. Filter even numbers:

 even_numbers = [x for x in range(10) if x % 2 == 0]
 print(even_numbers) # Output: [0, 2, 4, 6, 8]

[0, 2, 4, 6, 8]

In [378…

In [381…

In [384…

In []:

In [390…

In [393…

21. Convert strings to uppercase:

 fruits = ["apple", "banana", "cherry"]
 uppercase_fruits = [fruit.upper() for fruit in fruits]
 print(uppercase_fruits) # Output: ["APPLE", "BANANA", "CHERRY"]

['APPLE', 'BANANA', 'CHERRY']

Example Program

List Functions and Methods
numbers = [3, 1, 4, 1, 5, 9]

Common functions
print("Length:", len(numbers))
print("Max:", max(numbers))
print("Min:", min(numbers))
print("Sum:", sum(numbers))
print("Sorted:", sorted(numbers))

Common methods
numbers.append(2)
print("After append:", numbers)

numbers.extend([7, 8])
print("After extend:", numbers)

numbers.insert(2, 10)
print("After insert:", numbers)

numbers.remove(1)
print("After remove:", numbers)

popped = numbers.pop(3)
print("Popped element:", popped)
print("After pop:", numbers)

print("Index of 5:", numbers.index(5))
print("Count of 1:", numbers.count(1))

numbers.sort()
print("Sorted list:", numbers)

numbers.reverse()
print("Reversed list:", numbers)

List comprehension
squares = [x ** 2 for x in numbers]
print("Squares:", squares)

In [396…

In [399…

Length: 6
Max: 9
Min: 1
Sum: 23
Sorted: [1, 1, 3, 4, 5, 9]
After append: [3, 1, 4, 1, 5, 9, 2]
After extend: [3, 1, 4, 1, 5, 9, 2, 7, 8]
After insert: [3, 1, 10, 4, 1, 5, 9, 2, 7, 8]
After remove: [3, 10, 4, 1, 5, 9, 2, 7, 8]
Popped element: 1
After pop: [3, 10, 4, 5, 9, 2, 7, 8]
Index of 5: 3
Count of 1: 0
Sorted list: [2, 3, 4, 5, 7, 8, 9, 10]
Reversed list: [10, 9, 8, 7, 5, 4, 3, 2]
Squares: [100, 81, 64, 49, 25, 16, 9, 4]

8. Tuples
A tuple is an ordered, immutable (unchangeable) collection of elements. Tuples are
similar to lists, but unlike lists, once a tuple is created, its elements cannot be modified,
added, or removed. Tuples are often used for fixed data that shouldn’t change, such as
coordinates, dates, or configurations.

Creating Tuples

Tuples are created by enclosing elements in parentheses () , separated by commas. If a
tuple has only one element, you must include a trailing comma to distinguish it from a
regular value.

Syntax:

my_tuple = (element1, element2, element3)

Examples:

Tuple of integers
numbers = (1, 2, 3, 4, 5)

Tuple of strings
fruits = ("apple", "banana", "cherry")

Mixed data types
mixed_tuple = (1, "apple", 3.14, True)

Single-element tuple
single_element = (42,) # Note the trailing comma

In []:

In [5]:

Without the trailing comma, Python will treat it as a regular value:

 not_a_tuple = (42) # This is an integer, not a tuple

Accessing Tuple Elements

Like lists, tuples support indexing and slicing to access elements.

1. Indexing: Access elements using their index (zero-based).

 fruits = ("apple", "banana", "cherry")
 print(fruits[0]) # Output: apple
 print(fruits[2]) # Output: cherry

apple
cherry

2. Negative Indexing: Access elements from the end of the tuple.

 print(fruits[-1]) # Output: cherry (last element)
 print(fruits[-2]) # Output: banana (second last element)

cherry
banana

3. Slicing: Extract a subtuple using slicing.

 numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9)
 print(numbers[2:5]) # Output: (3, 4, 5) (elements from index 2 to 4)
 print(numbers[:4]) # Output: (1, 2, 3, 4) (elements from start to index 3)
 print(numbers[5:]) # Output: (6, 7, 8, 9) (elements from index 5 to end)
 print(numbers[::2]) # Output: (1, 3, 5, 7, 9) (every second element)

(3, 4, 5)
(1, 2, 3, 4)
(6, 7, 8, 9)
(1, 3, 5, 7, 9)

Tuples Are Immutable

Unlike lists, tuples cannot be modified after creation. This means you cannot:

Add or remove elements.
Change existing elements.

Example:

In [8]:

In [13]:

In [18]:

In [21]:

fruits = ("apple", "banana", "cherry")
fruits[1] = "blueberry" # This will raise a TypeError

Tuple Operations

4. Concatenation: Combine two tuples using the + operator.

 tuple1 = (1, 2, 3)
 tuple2 = (4, 5, 6)
 combined = tuple1 + tuple2
 print(combined) # Output: (1, 2, 3, 4, 5, 6)

(1, 2, 3, 4, 5, 6)

5. Repetition: Repeat a tuple using the * operator.

 repeated = (1, 2) * 3
 print(repeated) # Output: (1, 2, 1, 2, 1, 2)

(1, 2, 1, 2, 1, 2)

6. Membership: Check if an element exists in a tuple using the in keyword.

 fruits = ("apple", "banana", "cherry")
 print("banana" in fruits) # Output: True
 print("mango" in fruits) # Output: False

True
False

7. Length: Use the len() function to get the number of elements in a tuple.

 print(len(fruits)) # Output: 3

3

Tuple Methods

Since tuples are immutable, they have fewer methods compared to lists. The most
commonly used methods are:

8. count() : Returns the number of occurrences of a value.

 numbers = (1, 2, 3, 1, 2, 1)
 print(numbers.count(1)) # Output: 3

3

In [24]:

In [29]:

In [32]:

In [35]:

In [38]:

In [41]:

9. index() : Returns the index of the first occurrence of a value.

 print(numbers.index(2)) # Output: 1

1

When to Use Tuples

Use tuples when you want to ensure the data remains constant and cannot be
modified.
Tuples are faster than lists for fixed data because of their immutability.
Use tuples as keys in dictionaries (since lists cannot be used as keys due to their
mutability).

Example:

Using a tuple as a dictionary key
location = {
 (40.7128, -74.0060): "New York",
 (34.0522, -118.2437): "Los Angeles"
}
print(location[(40.7128, -74.0060)]) # Output: New York

New York

Unpacking Tuples

You can unpack a tuple into multiple variables. This is useful for assigning values from a
tuple to individual variables.

Example:

coordinates = (10.0, 20.0)
x, y = coordinates
print("x:", x) # Output: x: 10.0
print("y:", y) # Output: y: 20.0

x: 10.0
y: 20.0

Example Program

Working with Tuples
fruits = ("apple", "banana", "cherry")

In [45]:

In [48]:

In [51]:

In [56]:

Accessing elements
print("First fruit:", fruits[0])
print("Last fruit:", fruits[-1])

Slicing
print("First two fruits:", fruits[:2])

Tuple operations
numbers = (1, 2, 3)
repeated = numbers * 2
print("Repeated tuple:", repeated)

Tuple methods
print("Count of 'banana':", fruits.count("banana"))
print("Index of 'cherry':", fruits.index("cherry"))

Unpacking
x, y, z = fruits
print("Unpacked values:", x, y, z)

Using tuples as dictionary keys
location = {
 (40.7128, -74.0060): "New York",
 (34.0522, -118.2437): "Los Angeles"
}
print("Location:", location[(40.7128, -74.0060)])

First fruit: apple
Last fruit: cherry
First two fruits: ('apple', 'banana')
Repeated tuple: (1, 2, 3, 1, 2, 3)
Count of 'banana': 1
Index of 'cherry': 2
Unpacked values: apple banana cherry
Location: New York

9. Functions
A function is a reusable block of code that performs a specific task. Functions help
organize code, avoid repetition, and make programs easier to read and maintain. In
Python, you can define your own functions using the def keyword.

Defining a Function

To define a function, use the def keyword followed by the function name, parentheses
() , and a colon : . The code block inside the function is indented.

Syntax:

def function_name(parameters):
 # Code to execute
 return result # Optional

function_name : The name of the function (follows the same rules as variable
names).
parameters : Inputs to the function (optional). These are variables that the function

uses to perform its task.
return : Specifies the value the function should return (optional). If omitted, the

function returns None .

Calling a Function

To use a function, you "call" it by writing its name followed by parentheses () . If the
function has parameters, you pass arguments inside the parentheses.

Example:

Define a function
def greet():
 print("Hello, World!")

Call the function
greet() # Output: Hello, World!

Hello, World!

Function Parameters and Arguments

Parameters are variables listed in the function definition. Arguments are the actual values
passed to the function when it is called.

Example:

Function with parameters
def greet(name):
 print(f"Hello, {name}!")

Call the function with an argument
greet("Alice") # Output: Hello, Alice!
greet("Bob") # Output: Hello, Bob!

Hello, Alice!
Hello, Bob!

In [62]:

In [65]:

In [70]:

Returning Values

Use the return statement to send a value back to the caller. A function can return any
type of data, including numbers, strings, lists, or even other functions.

Example:

Function that returns a value
def add(a, b):
 return a + b

Call the function and store the result
result = add(3, 5)
print(result) # Output: 8

8

If a function doesn’t have a return statement, it implicitly returns None .

Default Parameters

You can provide default values for parameters. If the caller doesn’t pass an argument for
that parameter, the default value is used.

Example:

def greet(name="Guest"):
 print(f"Hello, {name}!")

greet() # Output: Hello, Guest!
greet("Alice") # Output: Hello, Alice!

Hello, Guest!
Hello, Alice!

Keyword Arguments

When calling a function, you can specify arguments by their parameter names. This
allows you to pass arguments in any order.

Example:

def describe_pet(pet_name, animal_type="dog"):
 print(f"I have a {animal_type} named {pet_name}.")

Using keyword arguments
describe_pet(pet_name="Max", animal_type="cat") # Output: I have a cat named Ma
describe_pet(animal_type="hamster", pet_name="Bella") # Output: I have a hamste

In [73]:

In [77]:

In [80]:

I have a cat named Max.
I have a hamster named Bella.

Variable-Length Arguments

Sometimes, you may not know how many arguments will be passed to a function. Python
allows you to handle this using:

*args : Collects additional positional arguments as a tuple.
`kwargs`**: Collects additional keyword arguments as a dictionary.

Example:

Using *args
def add_numbers(*args):
 return sum(args)

print(add_numbers(1, 2, 3)) # Output: 6

Using **kwargs
def describe_pet(**kwargs):
 for key, value in kwargs.items():
 print(f"{key}: {value}")

describe_pet(name="Max", animal_type="dog", age=3)
Output:
name: Max
animal_type: dog
age: 3

6
name: Max
animal_type: dog
age: 3

Scope of Variables

Local Variables: Variables defined inside a function are local to that function and
cannot be accessed outside it.
Global Variables: Variables defined outside all functions are global and can be
accessed anywhere in the program.

Example:

x = 10 # Global variable

def my_function():
 y = 5 # Local variable

In [83]:

In [86]:

 print(x) # Access global variable
 print(y) # Access local variable

my_function()
print(x) # Output: 10
print(y) # This will raise an error (y is local to my_function)

10
5
10

Lambda Functions

A lambda function is a small, anonymous function defined using the lambda keyword.
It can have any number of arguments but only one expression.

Syntax:

lambda arguments: expression

Example:

Lambda function to add two numbers
add = lambda a, b: a + b
print(add(3, 5)) # Output: 8

8

Example Program

Working with Functions

Define a function
def greet(name="Guest"):
 print(f"Hello, {name}!")

Call the function
greet() # Output: Hello, Guest!
greet("Alice") # Output: Hello, Alice!

Function with return value
def add(a, b):
 return a + b

result = add(3, 5)
print("Sum:", result) # Output: Sum: 8

Function with *args
def multiply(*args):
 product = 1

In []:

In [90]:

In [93]:

 for num in args:
 product *= num
 return product

print("Product:", multiply(2, 3, 4)) # Output: Product: 24

Lambda function
square = lambda x: x ** 2
print("Square of 5:", square(5)) # Output: Square of 5: 25

Hello, Guest!
Hello, Alice!
Sum: 8
Product: 24
Square of 5: 25

10. Return Statement
The return statement is used in functions to send a value back to the caller. It also
terminates the execution of the function, meaning any code after the return statement
will not be executed.

Purpose of the Return Statement

1. Return a Value: The primary purpose of the return statement is to return a value
(or multiple values) from a function to the caller.

2. Exit a Function: The return statement immediately exits the function, even if
there is code after it.

Syntax

def function_name(parameters):
 # Code to execute
 return value # Value to return

If no value is specified, the function returns None .

Returning a Single Value

You can return a single value, such as a number, string, or boolean.

Example:

def add(a, b):
 return a + b

In [104…

In [107…

result = add(3, 5)
print(result) # Output: 8

8

Returning Multiple Values

Python allows you to return multiple values from a function by separating them with
commas. These values are returned as a tuple.

Example:

def calculate(a, b):
 sum = a + b
 difference = a - b
 product = a * b
 return sum, difference, product

result = calculate(10, 5)
print(result) # Output: (15, 5, 50)

Unpack the returned tuple
sum, difference, product = calculate(10, 5)
print("Sum:", sum) # Output: Sum: 15
print("Difference:", difference) # Output: Difference: 5
print("Product:", product) # Output: Product: 50

(15, 5, 50)
Sum: 15
Difference: 5
Product: 50

Returning None

If a function does not have a return statement or has a return statement without a
value, it returns None .

Example:

def greet(name):
 print(f"Hello, {name}!")

result = greet("Alice")
print(result) # Output: None

Hello, Alice!
None

In [112…

In [115…

Early Return

You can use the return statement to exit a function early based on a condition.

Example:

def is_positive(number):
 if number > 0:
 return True
 return False

print(is_positive(10)) # Output: True
print(is_positive(-5)) # Output: False

True
False

Returning Complex Data Types

You can return complex data types like lists, dictionaries, or even other functions.

Example:

Returning a list
def get_even_numbers(limit):
 return [x for x in range(limit) if x % 2 == 0]

print(get_even_numbers(10)) # Output: [0, 2, 4, 6, 8]

Returning a dictionary
def create_person(name, age):
 return {"name": name, "age": age}

print(create_person("Alice", 25)) # Output: {'name': 'Alice', 'age': 25}

[0, 2, 4, 6, 8]
{'name': 'Alice', 'age': 25}

Returning Functions

You can also return a function from another function. This is useful in advanced
programming techniques like closures and decorators.

Example:

def create_multiplier(factor):
 def multiplier(number):
 return number * factor
 return multiplier

In [118…

In [121…

In [124…

double = create_multiplier(2)
print(double(5)) # Output: 10

10

Example Program

Working with the Return Statement

Function to return a single value
def add(a, b):
 return a + b

print("Sum:", add(3, 5)) # Output: Sum: 8

Function to return multiple values
def calculate(a, b):
 sum = a + b
 difference = a - b
 product = a * b
 return sum, difference, product

sum, difference, product = calculate(10, 5)
print("Sum:", sum) # Output: Sum: 15
print("Difference:", difference) # Output: Difference: 5
print("Product:", product) # Output: Product: 50

Function with early return
def is_positive(number):
 if number > 0:
 return True
 return False

print("Is 10 positive?", is_positive(10)) # Output: Is 10 positive? True
print("Is -5 positive?", is_positive(-5)) # Output: Is -5 positive? False

Function returning a list
def get_even_numbers(limit):
 return [x for x in range(limit) if x % 2 == 0]

print("Even numbers up to 10:", get_even_numbers(10)) # Output: [0, 2, 4, 6, 8]

Function returning a dictionary
def create_person(name, age):
 return {"name": name, "age": age}

print("Person:", create_person("Alice", 25)) # Output: {'name': 'Alice', 'age':

Function returning another function
def create_multiplier(factor):
 def multiplier(number):
 return number * factor

In [127…

 return multiplier

double = create_multiplier(2)
print("Double of 5:", double(5)) # Output: Double of 5: 10

Sum: 8
Sum: 15
Difference: 5
Product: 50
Is 10 positive? True
Is -5 positive? False
Even numbers up to 10: [0, 2, 4, 6, 8]
Person: {'name': 'Alice', 'age': 25}
Double of 5: 10

11. If Statements
If statements are used to make decisions in your code. They allow you to execute a
block of code only if a certain condition is true. If statements are a fundamental part of
programming and are used to control the flow of your program.

Syntax of an If Statement

The basic structure of an if statement is as follows:

if condition:
 # Code to execute if the condition is true

condition : An expression that evaluates to True or False .
Indentation: The code block under the if statement must be indented (usually by
4 spaces).

Example of a Simple If Statement

age = 18

if age >= 18:
 print("You are an adult.")

You are an adult.

If age is greater than or equal to 18, the message "You are an adult." will be
printed. Otherwise, nothing happens.

Adding an Else Clause

In []:

In [133…

The else clause is used to execute a block of code when the if condition is False .

Syntax:

if condition:
 # Code to execute if the condition is true
else:
 # Code to execute if the condition is false

Example:

age = 15

if age >= 18:
 print("You are an adult.")
else:
 print("You are a minor.")

You are a minor.

If age is less than 18, the message "You are a minor." will be printed.

Using Elif for Multiple Conditions

The elif (short for "else if") clause is used to check multiple conditions. It is placed
between the if and else clauses.

Syntax:

if condition1:
 # Code to execute if condition1 is true
elif condition2:
 # Code to execute if condition2 is true
else:
 # Code to execute if all conditions are false

Example:

age = 25

if age < 13:
 print("You are a child.")
elif age < 18:
 print("You are a teenager.")
else:
 print("You are an adult.")

You are an adult.

In []:

In [139…

In []:

In [145…

This program checks multiple conditions and prints the appropriate message based
on the value of age .

Nested If Statements

You can nest if statements inside other if statements to create more complex
decision-making logic.

Example:

age = 20
has_license = True

if age >= 18:
 if has_license:
 print("You can drive.")
 else:
 print("You are old enough to drive but don't have a license.")
else:
 print("You are too young to drive.")

You can drive.

Logical Operators in If Statements

You can use logical operators (and , or , not) to combine multiple conditions.

1. and : Both conditions must be true.

 age = 20
 has_license = True

 if age >= 18 and has_license:
 print("You can drive.")

You can drive.

2. or : At least one condition must be true.

 age = 16
 has_parental_consent = True

 if age >= 18 or has_parental_consent:
 print("You can participate.")

You can participate.

In [150…

In [153…

In [156…

3. not : Inverts the condition.

 is_raining = False

 if not is_raining:
 print("Let's go outside!")

Let's go outside!

Truthy and Falsy Values

In Python, conditions are evaluated based on whether they are "truthy" or "falsy":

Falsy Values: False , 0 , "" (empty string), None , [] (empty list), {} (empty
dictionary), etc.
Truthy Values: Everything else.

Example:

name = ""

if name:
 print("Hello, " + name)
else:
 print("Name is empty.")

Name is empty.

Since name is an empty string (falsy), the program will print "Name is empty." .

Example Program

Working with If Statements

Simple If Statement
age = 18
if age >= 18:
 print("You are an adult.")

If-Else Statement
age = 15
if age >= 18:
 print("You are an adult.")
else:
 print("You are a minor.")

If-Elif-Else Statement
age = 25

In [159…

In [162…

In [166…

if age < 13:
 print("You are a child.")
elif age < 18:
 print("You are a teenager.")
else:
 print("You are an adult.")

Nested If Statements
age = 20
has_license = True
if age >= 18:
 if has_license:
 print("You can drive.")
 else:
 print("You are old enough to drive but don't have a license.")
else:
 print("You are too young to drive.")

Logical Operators
age = 20
has_license = True
if age >= 18 and has_license:
 print("You can drive.")

Truthy and Falsy Values
name = ""
if name:
 print("Hello, " + name)
else:
 print("Name is empty.")

You are an adult.
You are a minor.
You are an adult.
You can drive.
You can drive.
Name is empty.

12. If Statements & Comparisons
In Python, comparison operators are used to compare values and make decisions in
if statements. These operators evaluate to True or False , which determines

whether a block of code is executed.

Comparison Operators

Here are the most commonly used comparison operators:

Operator Description Example Result

== Equal to 5 == 5 True

!= Not equal to 5 != 3 True

> Greater than 10 > 5 True

< Less than 10 < 5 False

>= Greater than or equal to 10 >= 10 True

<= Less than or equal to 10 <= 5 False

Using Comparisons in If Statements

Comparison operators are often used in if statements to make decisions based on the
relationship between values.

Example:

x = 10
y = 5

if x > y:
 print("x is greater than y")
else:
 print("x is not greater than y")

x is greater than y

Chaining Comparisons

You can chain multiple comparisons using logical operators (and , or , not) to create
more complex conditions.

Example:

x = 10
y = 5
z = 7

if x > y and y < z:
 print("x is greater than y, and y is less than z")

x is greater than y, and y is less than z

Chaining Comparisons

In [169…

In [172…

You can chain multiple comparisons using logical operators (and , or , not) to create
more complex conditions.

Example:

x = 10
y = 5
z = 7

if x > y and y < z:
 print("x is greater than y, and y is less than z")

x is greater than y, and y is less than z

Comparing Strings

You can also use comparison operators with strings. Strings are compared
lexicographically (based on their Unicode values).

Example:

name1 = "Alice"
name2 = "Bob"

if name1 < name2:
 print(f"{name1} comes before {name2} in the dictionary.")
else:
 print(f"{name1} comes after {name2} in the dictionary.")

Alice comes before Bob in the dictionary.

Comparing Lists

Lists can also be compared using comparison operators. Python compares lists element
by element.

Example:

list1 = [1, 2, 3]
list2 = [1, 2, 4]

if list1 < list2:
 print("list1 is less than list2")

list1 is less than list2

Using in and not in for Membership

In [178…

In [183…

In [189…

The in and not in operators are used to check if a value exists (or does not exist) in
a sequence (e.g., list, tuple, string).

Example:

fruits = ["apple", "banana", "cherry"]

if "banana" in fruits:
 print("Banana is in the list.")

if "mango" not in fruits:
 print("Mango is not in the list.")

Banana is in the list.
Mango is not in the list.

Example Program

Working with If Statements & Comparisons

Comparing numbers
x = 10
y = 5

if x > y:
 print("x is greater than y")
else:
 print("x is not greater than y")

Chaining comparisons
z = 7
if x > y and y < z:
 print("x is greater than y, and y is less than z")

Comparing strings
name1 = "Alice"
name2 = "Bob"

if name1 < name2:
 print(f"{name1} comes before {name2} in the dictionary.")
else:
 print(f"{name1} comes after {name2} in the dictionary.")

Comparing lists
list1 = [1, 2, 3]
list2 = [1, 2, 4]

if list1 < list2:
 print("list1 is less than list2")

Membership testing

In [192…

In [195…

fruits = ["apple", "banana", "cherry"]

if "banana" in fruits:
 print("Banana is in the list.")

if "mango" not in fruits:
 print("Mango is not in the list.")

x is greater than y
x is greater than y, and y is less than z
Alice comes before Bob in the dictionary.
list1 is less than list2
Banana is in the list.
Mango is not in the list.

13. Dictionaries
A dictionary is a collection of key-value pairs. It is an unordered, mutable (changeable),
and indexed data structure. Dictionaries are optimized for retrieving values when the key
is known. Each key in a dictionary must be unique, and it maps to a specific value.

Creating a Dictionary

Dictionaries are created using curly braces {} or the dict() constructor. Each key-
value pair is separated by a colon : , and pairs are separated by commas.

Syntax:

my_dict = {
 key1: value1,
 key2: value2,
 key3: value3
}

Example:

Dictionary of person details
person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Using dict() constructor
person = dict(name="Alice", age=25, city="New York")

Accessing Dictionary Values

In []:

In [201…

You can access the value associated with a key using square brackets [] or the get()
method.

Example:

person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Accessing values
print(person["name"]) # Output: Alice
print(person.get("age")) # Output: 25

Alice
25

If the key does not exist, using [] will raise a KeyError , while get() will return
None (or a default value you specify).

 print(person.get("country", "Unknown")) # Output: Unknown

Unknown

Adding or Updating Dictionary Entries

You can add a new key-value pair or update an existing one by assigning a value to a
key.

Example:

person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Adding a new key-value pair
person["country"] = "USA"

Updating an existing key
person["age"] = 26

print(person)
Output: {'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

In [204…

In [211…

In [214…

Removing Dictionary Entries

You can remove a key-value pair using:

1. del : Deletes the key-value pair.

 del person["city"]
 print(person) # Output: {'name': 'Alice', 'age': 26, 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'country': 'USA'}

2. pop() : Removes the key-value pair and returns the value.

 age = person.pop("age")
 print(age) # Output: 26
 print(person) # Output: {'name': 'Alice', 'country': 'USA'}

26
{'name': 'Alice', 'country': 'USA'}

3. popitem() : Removes and returns the last inserted key-value pair (Python 3.7+).

 last_item = person.popitem()
 print(last_item) # Output: ('country', 'USA')
 print(person) # Output: {'name': 'Alice'}

('country', 'USA')
{'name': 'Alice'}

4. clear() : Removes all key-value pairs from the dictionary.

 person.clear()
 print(person) # Output: {}

{}

Dictionary Methods

Here are some commonly used dictionary methods:

1. keys() : Returns a list of all keys in the dictionary.

 print(person.keys()) # Output: dict_keys(['name', 'age', 'city'])

dict_keys([])

2. values() : Returns a list of all values in the dictionary.

In [219…

In [222…

In [225…

In [228…

In [233…

 print(person.values()) # Output: dict_values(['Alice', 25, 'New York'])

dict_values([])

3. items() : Returns a list of key-value pairs as tuples.

 print(person.items()) # Output: dict_items([('name', 'Alice'), ('age', 25),

dict_items([])

4. update() : Merges another dictionary into the current one.

 person.update({"country": "USA", "age": 26})
 print(person) # Output: {'name': 'Alice', 'age': 26, 'city': 'New York', 'co

{'country': 'USA', 'age': 26}

5. copy() : Returns a shallow copy of the dictionary.

 person_copy = person.copy()
 print(person_copy)

{'country': 'USA', 'age': 26}

Iterating Over a Dictionary

You can iterate over a dictionary using a for loop. By default, the loop iterates over the
keys.

Example:

person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Iterate over keys
for key in person:
 print(key)

Iterate over values
for value in person.values():
 print(value)

Iterate over key-value pairs
for key, value in person.items():
 print(f"{key}: {value}")

In [236…

In [239…

In [242…

In [247…

In [251…

name
age
city
Alice
25
New York
name: Alice
age: 25
city: New York

Dictionary Comprehensions

Similar to list comprehensions, dictionary comprehensions allow you to create
dictionaries in a concise way.

Syntax:

{key_expression: value_expression for item in iterable}

Example:

Create a dictionary of squares
squares = {x: x ** 2 for x in range(1, 6)}
print(squares) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested Dictionaries

Dictionaries can contain other dictionaries, allowing you to create complex data
structures.

Example:

students = {
 "Alice": {"age": 25, "grade": "A"},
 "Bob": {"age": 22, "grade": "B"},
 "Charlie": {"age": 23, "grade": "C"}
}

Accessing nested dictionary values
print(students["Alice"]["age"]) # Output: 25

25

Example Program

In []:

In [255…

In [258…

Working with Dictionaries

Creating a dictionary
person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Accessing values
print("Name:", person["name"])
print("Age:", person.get("age"))

Adding/updating entries
person["country"] = "USA"
person["age"] = 26

Removing entries
del person["city"]
age = person.pop("age")
last_item = person.popitem()

Dictionary methods
print("Keys:", person.keys())
print("Values:", person.values())
print("Items:", person.items())

Iterating over a dictionary
for key, value in person.items():
 print(f"{key}: {value}")

Dictionary comprehension
squares = {x: x ** 2 for x in range(1, 6)}
print("Squares:", squares)

Nested dictionaries
students = {
 "Alice": {"age": 25, "grade": "A"},
 "Bob": {"age": 22, "grade": "B"},
 "Charlie": {"age": 23, "grade": "C"}
}
print("Alice's age:", students["Alice"]["age"])

Name: Alice
Age: 25
Keys: dict_keys(['name'])
Values: dict_values(['Alice'])
Items: dict_items([('name', 'Alice')])
name: Alice
Squares: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
Alice's age: 25

In [263…

14. While Loop
A while loop is used to repeatedly execute a block of code as long as a condition is
True . It is useful when you don’t know in advance how many times the loop needs to

run.

Syntax of a While Loop

while condition:
 # Code to execute

condition : An expression that evaluates to True or False . The loop continues
as long as the condition is True .
Indentation: The code block under the while statement must be indented
(usually by 4 spaces).

Example of a Simple While Loop

count = 0

while count < 5:
 print("Count:", count)
 count += 1 # Increment count

Count: 0
Count: 1
Count: 2
Count: 3
Count: 4

The loop runs as long as count < 5 is True . Once count reaches 5, the
condition becomes False , and the loop stops.

Infinite While Loop

If the condition of a while loop is always True , the loop will run indefinitely. This is
called an infinite loop.

Example:

while True:
 print("This is an infinite loop!")

In []:

In [267…

In []:

To stop an infinite loop, you can use Ctrl+C in the terminal or add a break
statement (explained later).

Breaking Out of a While Loop

You can use the break statement to exit a loop prematurely, even if the condition is still
True .

Example:

count = 0

while True:
 print("Count:", count)
 count += 1
 if count >= 5:
 break # Exit the loop

Count: 0
Count: 1
Count: 2
Count: 3
Count: 4

Skipping Iterations with Continue

The continue statement skips the rest of the code in the current iteration and moves
to the next iteration of the loop.

Example:

count = 0

while count < 5:
 count += 1
 if count == 3:
 continue # Skip the rest of the code for this iteration
 print("Count:", count)

Count: 1
Count: 2
Count: 4
Count: 5

When count is 3, the continue statement skips the print() statement.

While Loop with Else

In [3]:

In [1]:

You can add an else block to a while loop. The else block executes when the loop
condition becomes False . However, if the loop is exited using a break statement, the
else block is skipped.

Example:

count = 0

while count < 5:
 print("Count:", count)
 count += 1
else:
 print("Loop finished!")

Count: 0
Count: 1
Count: 2
Count: 3
Count: 4
Loop finished!

Nested While Loops

You can nest while loops inside other while loops to create more complex logic.

Example:

i = 1

while i <= 3:
 j = 1
 while j <= 3:
 print(f"i: {i}, j: {j}")
 j += 1
 i += 1

i: 1, j: 1
i: 1, j: 2
i: 1, j: 3
i: 2, j: 1
i: 2, j: 2
i: 2, j: 3
i: 3, j: 1
i: 3, j: 2
i: 3, j: 3

Practical Example: Guessing Game

Here’s a simple guessing game using a while loop:

In [6]:

In [9]:

secret_number = 7
guess = None

while guess != secret_number:
 guess = int(input("Guess the secret number (between 1 and 10): "))
 if guess < secret_number:
 print("Too low!")
 elif guess > secret_number:
 print("Too high!")
 else:
 print("Congratulations! You guessed it!")

Too low!
Too high!
Congratulations! You guessed it!

Example Program

Working with While Loops

Simple While Loop
count = 0
while count < 5:
 print("Count:", count)
 count += 1

Infinite While Loop with Break
count = 0
while True:
 print("Count:", count)
 count += 1
 if count >= 5:
 break

While Loop with Continue
count = 0
while count < 5:
 count += 1
 if count == 3:
 continue
 print("Count:", count)

While Loop with Else
count = 0
while count < 5:
 print("Count:", count)
 count += 1
else:
 print("Loop finished!")

Nested While Loops

In [18]:

In []:

i = 1
while i <= 3:
 j = 1
 while j <= 3:
 print(f"i: {i}, j: {j}")
 j += 1
 i += 1

Guessing Game
secret_number = 7
guess = None
while guess != secret_number:
 guess = int(input("Guess the secret number (between 1 and 10): "))
 if guess < secret_number:
 print("Too low!")
 elif guess > secret_number:
 print("Too high!")
 else:
 print("Congratulations! You guessed it!")

16. For Loops
A for loop is used to iterate over a sequence (such as a list, tuple, string, or range) and
execute a block of code for each item in the sequence. For loops are commonly used
when you know in advance how many times you want to repeat a task.

Syntax of a For Loop

for item in sequence:
 # Code to execute

item : A variable that takes the value of each element in the sequence during each
iteration.
sequence : A collection of items (e.g., list, tuple, string, or range).

Indentation: The code block under the for statement must be indented (usually
by 4 spaces).

Iterating Over a List

You can use a for loop to iterate over a list and perform an action for each item.

Example:

fruits = ["apple", "banana", "cherry"]

In []:

In [1]:

for fruit in fruits:
 print(fruit)

apple
banana
cherry

Iterating Over a String

A string is a sequence of characters, so you can iterate over each character in a string.

Example:

message = "Hello"

for char in message:
 print(char)

H
e
l
l
o

Using the range() Function

The range() function generates a sequence of numbers, which is often used in for
loops.

Syntax:

range(start, stop, step)

start : The starting value (inclusive). Default is 0 .
stop : The ending value (exclusive).
step : The increment between numbers. Default is 1 .

Examples:

1. Iterate over a range of numbers:

 for i in range(5):
 print(i)

In [4]:

In []:

In [10]:

0
1
2
3
4

2. Specify a start and stop:

 for i in range(2, 6):
 print(i)

2
3
4
5

3. Specify a step:

 for i in range(1, 10, 2):
 print(i)

1
3
5
7
9

Nested For Loops

You can nest for loops inside other for loops to create more complex logic.

Example:

for i in range(3):
 for j in range(3):
 print(f"i: {i}, j: {j}")

i: 0, j: 0
i: 0, j: 1
i: 0, j: 2
i: 1, j: 0
i: 1, j: 1
i: 1, j: 2
i: 2, j: 0
i: 2, j: 1
i: 2, j: 2

Breaking Out of a For Loop

In [13]:

In [16]:

In [19]:

You can use the break statement to exit a for loop prematurely.

Example:

for i in range(10):
 if i == 5:
 break # Exit the loop
 print(i)

0
1
2
3
4

Skipping Iterations with Continue

The continue statement skips the rest of the code in the current iteration and moves
to the next iteration.

Example:

for i in range(5):
 if i == 2:
 continue # Skip the rest of the code for this iteration
 print(i)

0
1
3
4

For Loop with Else

You can add an else block to a for loop. The else block executes when the loop
finishes normally (i.e., without a break statement).

Example:

for i in range(3):
 print(i)
else:
 print("Loop finished!")

0
1
2
Loop finished!

In [22]:

In [25]:

In [28]:

Practical Example: Summing Numbers

Here’s an example of using a for loop to calculate the sum of numbers in a list:

numbers = [1, 2, 3, 4, 5]
total = 0

for num in numbers:
 total += num

print("Sum:", total)

Sum: 15

Example Program

Working with For Loops

Iterating over a list
fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
 print(fruit)

Iterating over a string
message = "Hello"
for char in message:
 print(char)

Using range()
for i in range(5):
 print(i)

for i in range(2, 6):
 print(i)

for i in range(1, 10, 2):
 print(i)

Nested For Loops
for i in range(3):
 for j in range(3):
 print(f"i: {i}, j: {j}")

Breaking out of a loop
for i in range(10):
 if i == 5:
 break
 print(i)

Skipping iterations with continue
for i in range(5):

In [31]:

In []:

 if i == 2:
 continue
 print(i)

For Loop with Else
for i in range(3):
 print(i)
else:
 print("Loop finished!")

Summing numbers in a list
numbers = [1, 2, 3, 4, 5]
total = 0
for num in numbers:
 total += num
print("Sum:", total)

17. Exponent Function
The exponent function is used to raise a number to a specified power. In Python, you
can calculate exponents using the ** operator or the built-in pow() function.
Additionally, the math module provides more advanced exponentiation capabilities.

Using the `` Operator**

The ** operator is the simplest way to calculate exponents in Python.

Syntax:

base ** exponent

Examples:

Calculate 2 raised to the power of 3
result = 2 ** 3
print(result) # Output: 8

Calculate 5 raised to the power of 2
result = 5 ** 2
print(result) # Output: 25

8
25

Using the pow() Function

In []:

In [5]:

The pow() function is a built-in function that calculates the power of a number. It takes
two arguments: the base and the exponent.

Syntax:

pow(base, exponent)

Examples:

Calculate 2 raised to the power of 3
result = pow(2, 3)
print(result) # Output: 8

Calculate 5 raised to the power of 2
result = pow(5, 2)
print(result) # Output: 25

8
25

Using the math.pow() Function

The math module provides a pow() function that works similarly to the built-in
pow() function but always returns a float.

Syntax:

math.pow(base, exponent)

Steps:

1. Import the math module.
2. Use math.pow() to calculate the exponent.

Example:

import math

Calculate 2 raised to the power of 3
result = math.pow(2, 3)
print(result) # Output: 8.0

Calculate 5 raised to the power of 2
result = math.pow(5, 2)
print(result) # Output: 25.0

8.0
25.0

In []:

In [9]:

In []:

In [13]:

Handling Negative Exponents

You can use negative exponents to calculate the reciprocal of a number raised to a
power.

Examples:

Calculate 2 raised to the power of -3
result = 2 ** -3
print(result) # Output: 0.125

Calculate 5 raised to the power of -2
result = pow(5, -2)
print(result) # Output: 0.04

0.125
0.04

Handling Fractional Exponents

Fractional exponents allow you to calculate roots. For example, raising a number to the
power of 1/2 calculates its square root.

Examples:

Calculate the square root of 16
result = 16 ** 0.5
print(result) # Output: 4.0

Calculate the cube root of 27
result = 27 ** (1/3)
print(result) # Output: 3.0

4.0
3.0

Practical Example: Custom Exponent Function

You can create a custom function to calculate exponents. This is useful if you want to add
additional logic or error handling.

Example:

def exponent(base, power):
 return base ** power

Calculate 2 raised to the power of 3

In [16]:

In [19]:

In [22]:

result = exponent(2, 3)
print(result) # Output: 8

8

Example Program

Working with Exponent Functions

Using the ** operator
result = 2 ** 3
print("2 ** 3 =", result) # Output: 8

result = 5 ** 2
print("5 ** 2 =", result) # Output: 25

Using the pow() function
result = pow(2, 3)
print("pow(2, 3) =", result) # Output: 8

result = pow(5, 2)
print("pow(5, 2) =", result) # Output: 25

Using math.pow()
import math
result = math.pow(2, 3)
print("math.pow(2, 3) =", result) # Output: 8.0

result = math.pow(5, 2)
print("math.pow(5, 2) =", result) # Output: 25.0

Handling negative exponents
result = 2 ** -3
print("2 ** -3 =", result) # Output: 0.125

result = pow(5, -2)
print("pow(5, -2) =", result) # Output: 0.04

Handling fractional exponents
result = 16 ** 0.5
print("16 ** 0.5 =", result) # Output: 4.0

result = 27 ** (1/3)
print("27 ** (1/3) =", result) # Output: 3.0

Custom exponent function
def exponent(base, power):
 return base ** power

result = exponent(2, 3)
print("exponent(2, 3) =", result) # Output: 8

In [25]:

2 ** 3 = 8
5 ** 2 = 25
pow(2, 3) = 8
pow(5, 2) = 25
math.pow(2, 3) = 8.0
math.pow(5, 2) = 25.0
2 ** -3 = 0.125
pow(5, -2) = 0.04
16 ** 0.5 = 4.0
27 ** (1/3) = 3.0
exponent(2, 3) = 8

18. 2D Lists & Nested Loops
A 2D list (or list of lists) is a list where each element is itself a list. This is often used to
represent grids, matrices, or tables. To work with 2D lists, you typically use nested loops
—a loop inside another loop—to iterate over the rows and columns.

Creating a 2D List

You can create a 2D list by nesting lists inside another list.

Example:

A 2D list representing a 3x3 grid
matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

Accessing Elements in a 2D List

To access an element in a 2D list, use two indices: the first for the row and the second for
the column.

Syntax:

matrix[row][column]

Example:

matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]

In [28]:

In []:

In [32]:

]

Access the element in the second row, third column
print(matrix[1][2]) # Output: 6

6

Iterating Over a 2D List Using Nested Loops

To iterate over all elements in a 2D list, use a nested loop:

The outer loop iterates over the rows.
The inner loop iterates over the columns.

Example:

matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

for row in matrix:
 for element in row:
 print(element, end=" ") # Print elements in the same row
 print() # Move to the next line after each row

1 2 3
4 5 6
7 8 9

Modifying a 2D List

You can modify elements in a 2D list using their indices.

Example:

matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

Change the element in the first row, second column
matrix[0][1] = 10

print(matrix)
Output: [[1, 10, 3], [4, 5, 6], [7, 8, 9]]

[[1, 10, 3], [4, 5, 6], [7, 8, 9]]

In [35]:

In [38]:

Creating a 2D List Using List Comprehension

You can use list comprehension to create a 2D list in a concise way.

Example:

Create a 3x3 matrix with all elements set to 0
matrix = [[0 for _ in range(3)] for _ in range(3)]
print(matrix)
Output: [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

[[0, 0, 0], [0, 0, 0], [0, 0, 0]]

Practical Example: Matrix Addition

Here’s an example of adding two 2D lists (matrices) element-wise:

Define two 2x2 matrices
matrix1 = [
 [1, 2],
 [3, 4]
]

matrix2 = [
 [5, 6],
 [7, 8]
]

Create a result matrix with the same dimensions
result = [[0 for _ in range(2)] for _ in range(2)]

Perform matrix addition
for i in range(2): # Iterate over rows
 for j in range(2): # Iterate over columns
 result[i][j] = matrix1[i][j] + matrix2[i][j]

print(result)
Output: [[6, 8], [10, 12]]

[[6, 8], [10, 12]]

Example Program

Working with 2D Lists & Nested Loops

Creating a 2D list
matrix = [
 [1, 2, 3],

In [41]:

In [44]:

In [51]:

 [4, 5, 6],
 [7, 8, 9]
]

Accessing elements
print("Element at row 1, column 2:", matrix[1][2]) # Output: 6

Iterating over a 2D list
print("Matrix elements:")
for row in matrix:
 for element in row:
 print(element, end=" ")
 print()

Modifying a 2D list
matrix[0][1] = 10
print("Modified matrix:")
for row in matrix:
 for element in row:
 print(element, end=" ")
 print()

Creating a 2D list using list comprehension
matrix2 = [[0 for _ in range(3)] for _ in range(3)]
print("2D list created using list comprehension:")
for row in matrix2:
 for element in row:
 print(element, end=" ")
 print()

Matrix addition
matrix1 = [
 [1, 2],
 [3, 4]
]

matrix2 = [
 [5, 6],
 [7, 8]
]

result = [[0 for _ in range(2)] for _ in range(2)]

for i in range(2):
 for j in range(2):
 result[i][j] = matrix1[i][j] + matrix2[i][j]

print("Result of matrix addition:")
for row in result:
 for element in row:
 print(element, end=" ")
 print()

Element at row 1, column 2: 6
Matrix elements:
1 2 3
4 5 6
7 8 9
Modified matrix:
1 10 3
4 5 6
7 8 9
2D list created using list comprehension:
0 0 0
0 0 0
0 0 0
Result of matrix addition:
6 8
10 12

19. Comments
Comments are notes or explanations added to your code to make it easier to
understand. They are ignored by the Python interpreter and are only meant for humans
(developers, collaborators, or your future self). Comments are essential for writing clean,
maintainable, and readable code.

Types of Comments

Python supports two types of comments:

1. Single-line comments: Used for short explanations or notes.
2. Multi-line comments: Used for longer descriptions or documentation.

Single-Line Comments

Single-line comments start with the # symbol. Everything after # on that line is
ignored by the Python interpreter.

Syntax:

This is a single-line comment

Example:

Calculate the sum of two numbers
a = 5
b = 10

In [54]:

In [57]:

sum = a + b # Store the result in the variable 'sum'
print(sum)

15

Multi-Line Comments

Python doesn’t have a specific syntax for multi-line comments. However, you can use
multi-line strings (enclosed in triple quotes ''' or """) to create block comments.
These are not technically comments but are treated as strings and ignored if not
assigned to a variable.

Syntax:

"""
This is a multi-line comment.
It can span multiple lines.
"""

Example:

"""
This program calculates the area of a rectangle.
It takes the length and width as input and prints the area.
"""
length = 10
width = 5
area = length * width
print("Area:", area)

Area: 50

Best Practices for Using Comments

1. Explain Why, Not What: Comments should explain why the code is written a
certain way, not what the code does (unless the code is complex or non-obvious).

 # Bad: This adds 5 and 10
 sum = 5 + 10

 # Good: Calculate the total cost including tax
 total_cost = price + (price * tax_rate)

2. Keep Comments Up-to-Date: If you change the code, make sure to update the
comments to reflect the changes.

In []:

In [63]:

In []:

3. Avoid Over-Commenting: Don’t add comments for every line of code. Only
comment when necessary to clarify complex logic or decisions.

4. Use Comments for TODOs: Use comments to mark areas of the code that need
improvement or additional work.

 # TODO: Optimize this function for better performance
 def calculate_sum(numbers):
 return sum(numbers)

Inline Comments

Inline comments are placed on the same line as the code. They should be used sparingly
and only to clarify complex or non-obvious code.

Example:

x = 10 # Initialize x with a value of 10

Docstrings

Docstrings are a special type of multi-line comment used to document functions,
classes, and modules. They are enclosed in triple quotes and are accessible at runtime
using the __doc__ attribute.

Example:

def add(a, b):
 """
 This function adds two numbers and returns the result.

 Parameters:
 a (int): The first number.
 b (int): The second number.

 Returns:
 int: The sum of a and b.
 """
 return a + b

Access the docstring
print(add.__doc__)

In []:

In [72]:

In [75]:

 This function adds two numbers and returns the result.

 Parameters:
 a (int): The first number.
 b (int): The second number.

 Returns:
 int: The sum of a and b.

Example Program

Working with Comments

Single-line comment
This program calculates the area of a rectangle

Multi-line comment
"""
This program takes the length and width of a rectangle as input,
calculates the area, and prints the result.
"""

Variables
length = 10 # Length of the rectangle
width = 5 # Width of the rectangle

Calculate area
area = length * width # Area = length * width

Print the result
print("Area:", area)

Function with a docstring
def multiply(a, b):
 """
 This function multiplies two numbers and returns the result.

 Parameters:
 a (int): The first number.
 b (int): The second number.

 Returns:
 int: The product of a and b.
 """
 return a * b

Access the docstring
print(multiply.__doc__)

In [78]:

Area: 50

 This function multiplies two numbers and returns the result.

 Parameters:
 a (int): The first number.
 b (int): The second number.

 Returns:
 int: The product of a and b.

20. Try / Except
The try/except block is used in Python to handle exceptions (errors) that occur during
the execution of a program. Instead of crashing the program, you can catch and handle
exceptions gracefully, allowing the program to continue running or provide meaningful
feedback to the user.

What Are Exceptions?

Exceptions are errors that occur during the execution of a program. Examples include:

ZeroDivisionError : Division by zero.
TypeError : Performing an operation on incompatible types.
ValueError : Passing an invalid value to a function.
FileNotFoundError : Trying to open a file that doesn’t exist.

Syntax of Try/Except

The basic structure of a try/except block is as follows:

try:
 # Code that might raise an exception
except ExceptionType:
 # Code to handle the exception

try block: Contains the code that might raise an exception.
except block: Contains the code to handle the exception if it occurs.

Handling Specific Exceptions

You can specify the type of exception to catch in the except block. This allows you to
handle different exceptions differently.

In []:

Example:

try:
 num = int(input("Enter a number: "))
 result = 10 / num
 print("Result:", result)
except ZeroDivisionError:
 print("Error: Cannot divide by zero.")
except ValueError:
 print("Error: Invalid input. Please enter a number.")

Error: Cannot divide by zero.

If the user enters 0 , the program will catch the ZeroDivisionError and print
"Error: Cannot divide by zero."

If the user enters a non-numeric value, the program will catch the ValueError and
print "Error: Invalid input. Please enter a number."

Handling Multiple Exceptions in One Block

You can handle multiple exceptions in a single except block by specifying them as a
tuple.

Example:

try:
 num = int(input("Enter a number: "))
 result = 10 / num
 print("Result:", result)
except (ZeroDivisionError, ValueError):
 print("Error: Invalid input or division by zero.")

Error: Invalid input or division by zero.

Using a Generic Exception

You can use a generic except block to catch all exceptions. However, this is generally
not recommended because it can hide unexpected errors.

Example:

try:
 num = int(input("Enter a number: "))
 result = 10 / num
 print("Result:", result)
except:
 print("An error occurred.")

In [86]:

In [89]:

In [92]:

An error occurred.

The Else Block

The else block is executed if no exceptions occur in the try block. It is useful for
code that should only run if the try block succeeds.

Example:

try:
 num = int(input("Enter a number: "))
 result = 10 / num
except ZeroDivisionError:
 print("Error: Cannot divide by zero.")
except ValueError:
 print("Error: Invalid input. Please enter a number.")
else:
 print("Result:", result)

Error: Cannot divide by zero.

The Finally Block

The finally block is executed no matter what—whether an exception occurs or not. It
is typically used for cleanup actions, such as closing files or releasing resources.

Example:

try:
 file = open("example.txt", "r")
 content = file.read()
 print(content)
except FileNotFoundError:
 print("Error: File not found.")
finally:
 file.close()
 print("File closed.")

File closed.

Raising Exceptions

You can raise exceptions manually using the raise keyword. This is useful for enforcing
constraints or signaling errors in your code.

Example:

In [95]:

In [100…

def divide(a, b):
 if b == 0:
 raise ValueError("Cannot divide by zero.")
 return a / b

try:
 result = divide(10, 0)
except ValueError as e:
 print(e) # Output: Cannot divide by zero.

Cannot divide by zero.

Custom Exceptions

You can define your own exceptions by creating a new class that inherits from Python’s
built-in Exception class.

Example:

class NegativeNumberError(Exception):
 pass

def check_positive(number):
 if number < 0:
 raise NegativeNumberError("Negative numbers are not allowed.")

try:
 check_positive(-5)
except NegativeNumberError as e:
 print(e) # Output: Negative numbers are not allowed.

Negative numbers are not allowed.

Example Program

Working with Try/Except

Handling specific exceptions
try:
 num = int(input("Enter a number: "))
 result = 10 / num
 print("Result:", result)
except ZeroDivisionError:
 print("Error: Cannot divide by zero.")
except ValueError:
 print("Error: Invalid input. Please enter a number.")

Using else and finally
try:
 file = open("example.txt", "r")

In [103…

In [108…

In [111…

 content = file.read()
 print(content)
except FileNotFoundError:
 print("Error: File not found.")
else:
 print("File read successfully.")
finally:
 file.close()
 print("File closed.")

Raising exceptions
def divide(a, b):
 if b == 0:
 raise ValueError("Cannot divide by zero.")
 return a / b

try:
 result = divide(10, 0)
except ValueError as e:
 print(e)

Custom exceptions
class NegativeNumberError(Exception):
 pass

def check_positive(number):
 if number < 0:
 raise NegativeNumberError("Negative numbers are not allowed.")

try:
 check_positive(-5)
except NegativeNumberError as e:
 print(e)

Error: Cannot divide by zero.

File read successfully.
File closed.
Cannot divide by zero.
Negative numbers are not allowed.

21. Reading Files
Reading files is a common task in programming. Python provides built-in functions to
open, read, and manipulate files. Files can contain text, data, or any other information,
and reading them allows you to process their contents in your program.

Opening a File

To read a file, you first need to open it using the open() function. The open()
function returns a file object, which provides methods for reading and manipulating the
file.

Syntax:

file = open("filename", "mode")

filename : The name of the file (including the path if necessary).
mode : The mode in which the file is opened. For reading, use "r" (read mode).

Example:

file = open("example.txt", "r")

Reading the Entire File

You can read the entire contents of a file using the read() method.

Example:

file = open("example.txt", "r")
content = file.read()
print(content)
file.close()

Hello from the file
this is the example file for working with files in the python

read() : Reads the entire file as a single string.
close() : Closes the file to free up system resources.

Reading Line by Line

You can read a file line by line using the readline() method or iterate over the file
object directly.

1. Using readline() :

 file = open("example.txt", "r")
 line = file.readline()
 while line:
 print(line, end="") # end="" prevents extra newlines

In []:

In []:

In [121…

In [123…

 line = file.readline()
 file.close()

Hello from the file
this is the example file for working with files in the python

2. Using a for loop:

 file = open("example.txt", "r")
 for line in file:
 print(line, end="")
 file.close()

Hello from the file
this is the example file for working with files in the python

Reading All Lines into a List

You can read all lines of a file into a list using the readlines() method.

Example:

file = open("example.txt", "r")
lines = file.readlines()
for line in lines:
 print(line, end="")
file.close()

Hello from the file
this is the example file for working with files in the python

readlines() : Returns a list where each element is a line from the file.

Using with for File Handling

The with statement is the recommended way to work with files. It automatically closes
the file when the block inside with is exited, even if an exception occurs.

Syntax:

with open("filename", "mode") as file:
 # Code to work with the file

Example:

with open("example.txt", "r") as file:
 content = file.read()
 print(content)

In [126…

In [129…

In []:

In [134…

Hello from the file
this is the example file for working with files in the python

No need to call close() explicitly—it’s handled automatically.

Handling File Not Found Errors

If the file does not exist, Python will raise a FileNotFoundError . You can handle this
using a try/except block.

Example:

try:
 with open("example.txt", "r") as file:
 content = file.read()
 print(content)
except FileNotFoundError:
 print("Error: File not found.")

Hello from the file
this is the example file for working with files in the python

Reading Specific Parts of a File

You can read a specific number of characters from a file using the read(size) method,
where size is the number of characters to read.

Example:

with open("example.txt", "r") as file:
 first_10_chars = file.read(10)
 print(first_10_chars)

Hello from

Example Program

Working with Reading Files

Reading the entire file
with open("example.txt", "r") as file:
 content = file.read()
 print("Entire file content:")
 print(content)

Reading line by line

In [137…

In [140…

In [143…

with open("example.txt", "r") as file:
 print("\nFile content line by line:")
 for line in file:
 print(line, end="")

Reading all lines into a list
with open("example.txt", "r") as file:
 lines = file.readlines()
 print("\nFile content as a list of lines:")
 for line in lines:
 print(line, end="")

Handling file not found errors
try:
 with open("nonexistent.txt", "r") as file:
 content = file.read()
 print(content)
except FileNotFoundError:
 print("\nError: File not found.")

Reading specific parts of a file
with open("example.txt", "r") as file:
 first_10_chars = file.read(10)
 print("\nFirst 10 characters of the file:")
 print(first_10_chars)

Entire file content:
Hello from the file
this is the example file for working with files in the python

File content line by line:
Hello from the file
this is the example file for working with files in the python

File content as a list of lines:
Hello from the file
this is the example file for working with files in the python

Error: File not found.

First 10 characters of the file:
Hello from

22. Writing to Files
Writing to files is a common task in programming. Python provides built-in functions to
open, write, and manipulate files. You can create new files, overwrite existing files, or
append to existing files.

Opening a File for Writing

To write to a file, you need to open it in write mode ("w") or append mode ("a"). The
open() function returns a file object, which provides methods for writing to the file.

Syntax:

file = open("filename", "mode")

filename : The name of the file (including the path if necessary).
mode :

"w" : Write mode (overwrites the file if it exists or creates a new file if it
doesn’t).
"a" : Append mode (adds to the end of the file if it exists or creates a new file

if it doesn’t).

Example:

file = open("example.txt", "w")

Writing to a File

You can write to a file using the write() method. This method writes a string to the
file.

Example:

file = open("example.txt", "w")
file.write("Hello, World!\n")
file.write("This is a new line.")
file.close()

Read file content
with open("example.txt", "r") as file:
 content = file.read()
 print(content)

Hello, World!
This is a new line.

write() : Writes a string to the file.
close() : Closes the file to free up system resources.

Appending to a File

In []:

In []:

In [9]:

To add content to the end of a file without overwriting it, open the file in append mode
("a").

Example:

file = open("example.txt", "a")
file.write("\nThis line is appended.")
file.close()

Read file content
with open("example.txt", "r") as file:
 content = file.read()
 print(content)

Hello, World!
This is a new line.
This line is appended.

Using with for File Handling

The with statement is the recommended way to work with files. It automatically closes
the file when the block inside with is exited, even if an exception occurs.

Syntax:

with open("filename", "mode") as file:
 # Code to work with the file

Example:

with open("example.txt", "w") as file:
 file.write("Hello, World!\n")
 file.write("This is a new line.")

Read file content
with open("example.txt", "r") as file:
 content = file.read()
 print(content)

Hello, World!
This is a new line.

In [15]:

In []:

In [21]:

Writing Multiple Lines

You can write multiple lines to a file using the writelines() method. This method
takes a list of strings and writes them to the file.

Example:

lines = ["Line 1\n", "Line 2\n", "Line 3\n"]

with open("example.txt", "w") as file:
 file.writelines(lines)

Read file content
with open("example.txt", "r") as file:
 content = file.read()
 print(content)

Line 1
Line 2
Line 3

Handling File Errors

If there’s an issue with the file (e.g., permission errors), Python will raise an exception. You
can handle these errors using a try/except block.

Example:

try:
 with open("test.txt", "w") as file:
 file.write("Hello, World!")
except IOError:
 print("Error: Could not write to the file.")

Error: Could not write to the file.

Example Program

Working with Writing Files

Writing to a new file
with open("example.txt", "w") as file:
 file.write("Hello, World!\n")
 file.write("This is a new line.")

Appending to an existing file

In [24]:

In [40]:

In [43]:

with open("example.txt", "a") as file:
 file.write("\nThis line is appended.")

Writing multiple lines
lines = ["Line 1\n", "Line 2\n", "Line 3\n"]
with open("example.txt", "w") as file:
 file.writelines(lines)

Handling file errors
try:
 with open("example.txt", "w") as file:
 file.write("Hello, World!")
except IOError:
 print("Error: Could not write to the file.")

Reading the file to verify its contents
with open("example.txt", "r") as file:
 content = file.read()
 print("File content:")
 print(content)

File content:
Hello, World!

23. Modules & Pip
Modules and pip are essential tools in Python for organizing code and managing
external libraries. Modules allow you to reuse code across multiple programs, while pip is
the package installer for Python, enabling you to install and manage third-party libraries.

What Are Modules?

A module is a file containing Python code (functions, classes, or variables) that can be
imported and used in other programs. Modules help you organize your code into
reusable components.

Creating a Module

To create a module, simply save your Python code in a .py file. For example, save the
following code in a file named mymodule.py :

mymodule.py
def greet(name):
 return f"Hello, {name}!"

def add(a, b):
 return a + b

In [46]:

Importing a Module

You can import a module using the import statement. Once imported, you can access
its functions, classes, or variables using the dot notation.

Example:

import mymodule

Using functions from the module
print(mymodule.greet("Alice")) # Output: Hello, Alice!
print(mymodule.add(3, 5)) # Output: 8

Hello, Alice!
8

Importing Specific Functions

You can import specific functions or variables from a module using the from ...
import statement.

Example:

from mymodule import greet, add

Using the imported functions
print(greet("Bob")) # Output: Hello, Bob!
print(add(2, 4)) # Output: 6

Hello, Bob!
6

Renaming Imports

You can rename a module or function when importing it using the as keyword.

Example:

import mymodule as mm

print(mm.greet("Charlie")) # Output: Hello, Charlie!

Hello, Charlie!

Standard Library Modules

In [49]:

In [52]:

In [55]:

Python comes with a rich set of built-in modules, known as the Standard Library. These
modules provide functionality for tasks like math, file handling, and working with dates.

Example:

import math

print(math.sqrt(16)) # Output: 4.0

4.0

What is Pip?

Pip is the package installer for Python. It allows you to install, upgrade, and manage
third-party libraries and packages from the Python Package Index (PyPI).

Installing Packages with Pip

To install a package, use the following command in your terminal or command prompt:

pip install package_name
Example:

pip install requests

Using Installed Packages

Once a package is installed, you can import and use it in your Python programs.

Example:

import requests

response = requests.get("https://www.example.com")
print(response.status_code) # Output: 200 (if the request is successful)

200

Listing Installed Packages

To see a list of installed packages, use the following command:

pip list

Upgrading Packages

In [58]:

In [62]:

To upgrade an installed package to the latest version, use:

pip install --upgrade package_name
Example:

pip install --upgrade requests

Uninstalling Packages

To uninstall a package, use:

pip uninstall package_name
Example:

pip uninstall requests

Creating a Requirements File

A requirements.txt file lists all the dependencies for a project. You can generate this
file using:

pip freeze > requirements.txt
To install all dependencies from a requirements.txt file, use:

pip install -r requirements.txt

Example Program

Working with Modules & Pip

Importing a custom module
import mymodule

print(mymodule.greet("Alice")) # Output: Hello, Alice!
print(mymodule.add(3, 5)) # Output: 8

Importing specific functions
from mymodule import greet, add

print(greet("Bob")) # Output: Hello, Bob!
print(add(2, 4)) # Output: 6

Renaming imports
import mymodule as mm

print(mm.greet("Charlie")) # Output: Hello, Charlie!

Using a standard library module
import math

In [65]:

print(math.sqrt(16)) # Output: 4.0

Using an installed package (e.g., requests)
import requests

response = requests.get("https://www.example.com")
print(response.status_code) # Output: 200 (if the request is successful)

Hello, Alice!
8
Hello, Bob!
6
Hello, Charlie!
4.0
200

24. Classes & Objects
Classes and objects are the foundation of object-oriented programming (OOP) in
Python. A class is a blueprint for creating objects, and an object is an instance of a class.
OOP allows you to structure your code in a way that models real-world entities and their
relationships.

What is a Class?

A class is a template or blueprint that defines the properties (attributes) and behaviors
(methods) of objects. It encapsulates data and functionality into a single unit.

Defining a Class

To define a class, use the class keyword followed by the class name. By convention,
class names are written in CamelCase.

Syntax:

class ClassName:
 # Class attributes and methods

Example:

class Dog:
 # Class attribute (shared by all instances)
 species = "Canis familiaris"

 # Constructor method (initializes object attributes)
 def __init__(self, name, age):

In []:

In [69]:

 self.name = name # Instance attribute
 self.age = age # Instance attribute

 # Instance method
 def bark(self):
 return f"{self.name} says woof!"

What is an Object?

An object is an instance of a class. You can create multiple objects from a single class,
each with its own unique attributes.

Creating Objects

To create an object, call the class name as if it were a function. This invokes the
__init__ method (constructor) to initialize the object.

Example:

Create objects of the Dog class
dog1 = Dog("Buddy", 3)
dog2 = Dog("Max", 5)

Access attributes
print(dog1.name) # Output: Buddy
print(dog2.age) # Output: 5

Call methods
print(dog1.bark()) # Output: Buddy says woof!

Buddy
5
Buddy says woof!

The self Parameter

The self parameter refers to the current instance of the class. It is used to access
instance attributes and methods within the class.

Class Attributes vs. Instance Attributes

Class attributes: Shared by all instances of the class.
Instance attributes: Unique to each instance.

Example:

In [72]:

print(dog1.species) # Output: Canis familiaris (class attribute)
print(dog2.species) # Output: Canis familiaris (class attribute)

dog1.species = "Golden Retriever" # Modifying instance attribute
print(dog1.species) # Output: Golden Retriever
print(dog2.species) # Output: Canis familiaris (unchanged)

Canis familiaris
Canis familiaris
Golden Retriever
Canis familiaris

Adding Methods to a Class

Methods are functions defined inside a class. They define the behavior of objects.

Example:

class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 return f"{self.name} says woof!"

 def get_age(self):
 return f"{self.name} is {self.age} years old."

Create an object
dog = Dog("Buddy", 3)

Call methods
print(dog.bark()) # Output: Buddy says woof!
print(dog.get_age()) # Output: Buddy is 3 years old.

Buddy says woof!
Buddy is 3 years old.

The __str__ Method

The __str__ method is a special method that returns a string representation of the
object. It is called when you use the print() function or str() on the object.

Example:

class Dog:
 def __init__(self, name, age):
 self.name = name

In [75]:

In [80]:

In [83]:

 self.age = age

 def __str__(self):
 return f"{self.name} is {self.age} years old."

Create an object
dog = Dog("Buddy", 3)

Print the object
print(dog) # Output: Buddy is 3 years old.

Buddy is 3 years old.

Inheritance

Inheritance allows you to create a new class (child class) that inherits attributes and
methods from an existing class (parent class). This promotes code reuse and modularity.

Example:

Parent class
class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 return f"{self.name} makes a sound."

Child class
class Dog(Animal):
 def speak(self):
 return f"{self.name} says woof!"

Create objects
animal = Animal("Generic Animal")
dog = Dog("Buddy")

Call methods
print(animal.speak()) # Output: Generic Animal makes a sound.
print(dog.speak()) # Output: Buddy says woof!

Generic Animal makes a sound.
Buddy says woof!

Example Program

Working with Classes & Objects

Define a class
class Dog:

In [86]:

In [89]:

 # Class attribute
 species = "Canis familiaris"

 # Constructor
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Instance method
 def bark(self):
 return f"{self.name} says woof!"

 # Special method for string representation
 def __str__(self):
 return f"{self.name} is {self.age} years old."

Create objects
dog1 = Dog("Buddy", 3)
dog2 = Dog("Max", 5)

Access attributes
print(dog1.name) # Output: Buddy
print(dog2.age) # Output: 5

Call methods
print(dog1.bark()) # Output: Buddy says woof!
print(dog2.bark()) # Output: Max says woof!

Print objects
print(dog1) # Output: Buddy is 3 years old.
print(dog2) # Output: Max is 5 years old.

Inheritance example
class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 return f"{self.name} makes a sound."

class Dog(Animal):
 def speak(self):
 return f"{self.name} says woof!"

Create objects
animal = Animal("Generic Animal")
dog = Dog("Buddy")

Call methods
print(animal.speak()) # Output: Generic Animal makes a sound.
print(dog.speak()) # Output: Buddy says woof!

Buddy
5
Buddy says woof!
Max says woof!
Buddy is 3 years old.
Max is 5 years old.
Generic Animal makes a sound.
Buddy says woof!

25. Object Functions
Object functions (also called methods) are functions defined within a class that operate
on the attributes of an object. They define the behavior of objects and allow you to
perform actions or computations using the object's data.

Defining Object Functions

Object functions are defined inside a class and take self as their first parameter. The
self parameter refers to the instance of the class and allows you to access its

attributes and other methods.

Syntax:

class ClassName:
 def method_name(self, parameters):
 # Code to execute

Example:

class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Object function
 def bark(self):
 return f"{self.name} says woof!"

 # Another object function
 def get_age(self):
 return f"{self.name} is {self.age} years old."

Calling Object Functions

To call an object function, use the dot notation on an instance of the class.

In []:

In [93]:

Example:

Create an object
dog = Dog("Buddy", 3)

Call object functions
print(dog.bark()) # Output: Buddy says woof!
print(dog.get_age()) # Output: Buddy is 3 years old.

Buddy says woof!
Buddy is 3 years old.

Modifying Object Attributes

Object functions can modify the attributes of an object.

Example:

class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Object function to update age
 def birthday(self):
 self.age += 1
 return f"{self.name} is now {self.age} years old."

Create an object
dog = Dog("Buddy", 3)

Call the birthday function
print(dog.birthday()) # Output: Buddy is now 4 years old.
print(dog.birthday()) # Output: Buddy is now 5 years old.

Buddy is now 4 years old.
Buddy is now 5 years old.

Using Object Functions with Parameters

Object functions can take additional parameters to perform more complex operations.

Example:

class Calculator:
 def __init__(self, initial_value=0):
 self.value = initial_value

 # Object function with parameters
 def add(self, number):

In [98]:

In [101…

In [104…

 self.value += number
 return self.value

 def subtract(self, number):
 self.value -= number
 return self.value

Create an object
calc = Calculator(10)

Call object functions with parameters
print(calc.add(5)) # Output: 15
print(calc.subtract(3)) # Output: 12

15
12

Special Object Functions

Python provides special object functions (also called magic methods or dunder
methods) that allow you to define how objects behave in certain situations, such as
addition, comparison, or string representation.

Common Special Methods:

1. __str__ : Returns a string representation of the object (used by print() and
str()).

2. __len__ : Returns the length of the object (used by len()).
3. __add__ : Defines behavior for the + operator.
4. __eq__ : Defines behavior for the == operator.

Example:

class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Special method for string representation
 def __str__(self):
 return f"{self.name} is {self.age} years old."

 # Special method for addition
 def __add__(self, other):
 return Dog(f"{self.name} and {other.name}", self.age + other.age)

Create objects
dog1 = Dog("Buddy", 3)
dog2 = Dog("Max", 5)

In [107…

Use special methods
print(dog1) # Output: Buddy is 3 years old.

combined_dog = dog1 + dog2
print(combined_dog) # Output: Buddy and Max is 8 years old.

Buddy is 3 years old.
Buddy and Max is 8 years old.

Example Program

Working with Object Functions

Define a class
class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Object function
 def bark(self):
 return f"{self.name} says woof!"

 # Object function to update age
 def birthday(self):
 self.age += 1
 return f"{self.name} is now {self.age} years old."

 # Special method for string representation
 def __str__(self):
 return f"{self.name} is {self.age} years old."

Create an object
dog = Dog("Buddy", 3)

Call object functions
print(dog.bark()) # Output: Buddy says woof!
print(dog.birthday()) # Output: Buddy is now 4 years old.
print(dog.birthday()) # Output: Buddy is now 5 years old.

Print the object
print(dog) # Output: Buddy is 5 years old.

Using object functions with parameters
class Calculator:
 def __init__(self, initial_value=0):
 self.value = initial_value

 def add(self, number):
 self.value += number
 return self.value

 def subtract(self, number):

In [112…

 self.value -= number
 return self.value

Create an object
calc = Calculator(10)

Call object functions with parameters
print(calc.add(5)) # Output: 15
print(calc.subtract(3)) # Output: 12

Special object functions
class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def __str__(self):
 return f"{self.name} is {self.age} years old."

 def __add__(self, other):
 return Dog(f"{self.name} and {other.name}", self.age + other.age)

Create objects
dog1 = Dog("Buddy", 3)
dog2 = Dog("Max", 5)

Use special methods
print(dog1) # Output: Buddy is 3 years old.

combined_dog = dog1 + dog2
print(combined_dog) # Output: Buddy and Max is 8 years old.

Buddy says woof!
Buddy is now 4 years old.
Buddy is now 5 years old.
Buddy is 5 years old.
15
12
Buddy is 3 years old.
Buddy and Max is 8 years old.

26. Inheritance
Inheritance is a fundamental concept in object-oriented programming (OOP) that allows
you to create a new class (called a child class or subclass) based on an existing class
(called a parent class or superclass). The child class inherits attributes and methods from
the parent class, promoting code reuse and modularity.

Why Use Inheritance?

Code Reuse: Avoid duplicating code by inheriting common functionality from a
parent class.
Modularity: Organize code into logical hierarchies.
Extensibility: Add or modify functionality in the child class without affecting the
parent class.

Syntax of Inheritance

To create a child class, specify the parent class in parentheses after the child class name.

Syntax:

class ParentClass:
 # Parent class attributes and methods

class ChildClass(ParentClass):
 # Child class attributes and methods

Example of Inheritance

Here’s a simple example where a Dog class inherits from an Animal class:

Parent class
class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 return f"{self.name} makes a sound."

Child class
class Dog(Animal):
 def speak(self):
 return f"{self.name} says woof!"

Create objects
animal = Animal("Generic Animal")
dog = Dog("Buddy")

Call methods
print(animal.speak()) # Output: Generic Animal makes a sound.
print(dog.speak()) # Output: Buddy says woof!

Generic Animal makes a sound.
Buddy says woof!

The Dog class inherits the __init__ method and the name attribute from the
Animal class.

In []:

In [116…

The Dog class overrides the speak method to provide its own implementation.

The super() Function

The super() function allows you to call methods from the parent class. This is useful
when you want to extend the functionality of a parent method in the child class.

Example:

class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 return f"{self.name} makes a sound."

class Dog(Animal):
 def __init__(self, name, breed):
 super().__init__(name) # Call the parent class's __init__ method
 self.breed = breed

 def speak(self):
 return f"{self.name} says woof!"

Create an object
dog = Dog("Buddy", "Golden Retriever")

Access attributes and methods
print(dog.name) # Output: Buddy
print(dog.breed) # Output: Golden Retriever
print(dog.speak()) # Output: Buddy says woof!

Buddy
Golden Retriever
Buddy says woof!

Method Overriding

When a child class defines a method with the same name as a method in the parent
class, the child class’s method overrides the parent class’s method.

Example:

class Animal:
 def speak(self):
 return "Animal sound"

class Dog(Animal):
 def speak(self):

In [119…

In [122…

 return "Woof!"

Create objects
animal = Animal()
dog = Dog()

print(animal.speak()) # Output: Animal sound
print(dog.speak()) # Output: Woof!

Animal sound
Woof!

Adding New Methods in the Child Class

You can add new methods in the child class that are not present in the parent class.

Example:

class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 return f"{self.name} makes a sound."

class Dog(Animal):
 def fetch(self):
 return f"{self.name} fetches the ball."

Create an object
dog = Dog("Buddy")

Call methods
print(dog.speak()) # Output: Buddy makes a sound.
print(dog.fetch()) # Output: Buddy fetches the ball.

Buddy makes a sound.
Buddy fetches the ball.

Multi-Level Inheritance

In multi-level inheritance, a child class inherits from another child class, creating a chain
of inheritance.

Example:

class Animal:
 def __init__(self, name):
 self.name = name

In [125…

In [128…

 def speak(self):
 return f"{self.name} makes a sound."

class Dog(Animal):
 def speak(self):
 return f"{self.name} says woof!"

class Puppy(Dog):
 def play(self):
 return f"{self.name} is playing."

Create an object
puppy = Puppy("Max")

Call methods
print(puppy.speak()) # Output: Max says woof!
print(puppy.play()) # Output: Max is playing.

Max says woof!
Max is playing.

Multiple Inheritance

Python supports multiple inheritance, where a child class can inherit from more than
one parent class.

Example:

class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 return f"{self.name} makes a sound."

class Pet:
 def play(self):
 return f"{self.name} is playing."

class Dog(Animal, Pet):
 def speak(self):
 return f"{self.name} says woof!"

Create an object
dog = Dog("Buddy")

Call methods
print(dog.speak()) # Output: Buddy says woof!
print(dog.play()) # Output: Buddy is playing.

Buddy says woof!
Buddy is playing.

In [133…

Example Program

Working with Inheritance

Parent class
class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 return f"{self.name} makes a sound."

Child class
class Dog(Animal):
 def __init__(self, name, breed):
 super().__init__(name)
 self.breed = breed

 def speak(self):
 return f"{self.name} says woof!"

 def fetch(self):
 return f"{self.name} fetches the ball."

Create objects
animal = Animal("Generic Animal")
dog = Dog("Buddy", "Golden Retriever")

Call methods
print(animal.speak()) # Output: Generic Animal makes a sound.
print(dog.speak()) # Output: Buddy says woof!
print(dog.fetch()) # Output: Buddy fetches the ball.

Multi-level inheritance
class Puppy(Dog):
 def play(self):
 return f"{self.name} is playing."

puppy = Puppy("Max", "Labrador")
print(puppy.speak()) # Output: Max says woof!
print(puppy.play()) # Output: Max is playing.

Multiple inheritance
class Pet:
 def play(self):
 return f"{self.name} is playing."

class Cat(Animal, Pet):
 def speak(self):
 return f"{self.name} says meow!"

cat = Cat("Whiskers")

In [136…

print(cat.speak()) # Output: Whiskers says meow!
print(cat.play()) # Output: Whiskers is playing.

Generic Animal makes a sound.
Buddy says woof!
Buddy fetches the ball.
Max says woof!
Max is playing.
Whiskers says meow!
Whiskers is playing.

intermediate Python

1. Intro
The Intermediate Python section builds on the foundational knowledge covered in the
Beginner Python section. Here, we’ll explore more advanced concepts and techniques
that will help you write cleaner, more efficient, and more professional Python code.

What to Expect in Intermediate Python

In this section, you’ll learn about:

Advanced data structures like sets, collections, and itertools.
Powerful Python features like lambda functions, decorators, and generators.
Techniques for handling exceptions and errors and logging.
Working with JSON and generating random numbers.
Understanding function arguments and the asterisk (*) operator.
Concepts like shallow vs deep copying and context managers.
Exploring multithreading and multiprocessing for concurrent programming.

By the end of this section, you’ll have a deeper understanding of Python and be
equipped to tackle more complex programming challenges.

Why Learn Intermediate Python?

1. Write Cleaner Code: Learn techniques to make your code more readable, modular,
and maintainable.

2. Improve Efficiency: Use advanced features like generators and decorators to
optimize your code.

3. Handle Real-World Scenarios: Master error handling, logging, and working with
external data formats like JSON.

4. Unlock Python’s Full Potential: Explore Python’s powerful libraries and tools for
tasks like multithreading and multiprocessing.

How to Use This Section

Follow Along: Type out the examples and experiment with them to solidify your
understanding.
Practice: Try the exercises and challenges provided at the end of each topic.
Explore Further: Use the official Python documentation and online resources to
dive deeper into topics that interest you.

Example: A Taste of Intermediate Python

Here’s a quick example to give you a taste of what’s to come. We’ll use a lambda
function and the map() function to square a list of numbers:

Using a lambda function with map()
numbers = [1, 2, 3, 4, 5]
squared_numbers = list(map(lambda x: x ** 2, numbers))

print(squared_numbers) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

Lambda functions: Anonymous functions defined using the lambda keyword.
map(): Applies a function to all items in an iterable (e.g., a list).

2. Lists
Lists are one of Python’s most versatile and widely used data structures. In the Beginner
Python section, we covered the basics of lists. Now, we’ll dive deeper into advanced list
operations, comprehensions, and performance considerations.

Recap: What Are Lists?

A list is an ordered, mutable collection of items. Lists can store elements of different data
types and are defined using square brackets [] .

Example:

In [148…

fruits = ["apple", "banana", "cherry"]
numbers = [1, 2, 3, 4, 5]
mixed = [1, "apple", 3.14, True]

Advanced List Operations

1. List Comprehensions List comprehensions provide a concise way to create lists.
They are faster and more readable than traditional loops.

Syntax:

 [expression for item in iterable if condition]

Example:

 # Create a list of squares
 squares = [x ** 2 for x in range(1, 6)]
 print(squares) # Output: [1, 4, 9, 16, 25]

 # Filter even numbers
 evens = [x for x in range(10) if x % 2 == 0]
 print(evens) # Output: [0, 2, 4, 6, 8]

[1, 4, 9, 16, 25]
[0, 2, 4, 6, 8]

2. Nested List Comprehensions You can use nested list comprehensions to create lists
of lists (2D lists).

Example:

 # Create a 3x3 matrix
 matrix = [[i + j for j in range(3)] for i in range(3)]
 print(matrix)
 # Output: [[0, 1, 2], [1, 2, 3], [2, 3, 4]]

[[0, 1, 2], [1, 2, 3], [2, 3, 4]]

3. Slicing with Steps Slicing allows you to extract a portion of a list. You can also
specify a step to skip elements.

Example:

 numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 # Extract every second element

In [154…

In []:

In [158…

In [161…

In [166…

 print(numbers[::2]) # Output: [0, 2, 4, 6, 8]

 # Reverse the list
 print(numbers[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

[0, 2, 4, 6, 8]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

4. List Unpacking You can unpack a list into individual variables.

Example:

 fruits = ["apple", "banana", "cherry"]
 a, b, c = fruits
 print(a, b, c) # Output: apple banana cherry

apple banana cherry

5. Zip and Unzip Lists The zip() function combines multiple lists into a list of
tuples. You can also unzip them back into separate lists.

Example:

 names = ["Alice", "Bob", "Charlie"]
 ages = [25, 30, 35]

 # Zip lists
 zipped = list(zip(names, ages))
 print(zipped) # Output: [('Alice', 25), ('Bob', 30), ('Charlie', 35)]

 # Unzip lists
 names_unzipped, ages_unzipped = zip(*zipped)
 print(names_unzipped) # Output: ('Alice', 'Bob', 'Charlie')
 print(ages_unzipped) # Output: (25, 30, 35)

[('Alice', 25), ('Bob', 30), ('Charlie', 35)]
('Alice', 'Bob', 'Charlie')
(25, 30, 35)

6. List Methods Python provides several built-in methods for working with lists. Here
are some advanced ones:

extend() : Adds multiple elements to the end of a list.
insert() : Inserts an element at a specific index.
pop() : Removes and returns an element at a specific index.
remove() : Removes the first occurrence of a value.
index() : Returns the index of the first occurrence of a value.
count() : Returns the number of occurrences of a value.
sort() : Sorts the list in place.

In [169…

In [172…

reverse() : Reverses the list in place.
Example:

 numbers = [3, 1, 4, 1, 5, 9]

 numbers.sort()
 print(numbers) # Output: [1, 1, 3, 4, 5, 9]

 numbers.reverse()
 print(numbers) # Output: [9, 5, 4, 3, 1, 1]

[1, 1, 3, 4, 5, 9]
[9, 5, 4, 3, 1, 1]

Performance Considerations

Time Complexity: Be aware of the time complexity of list operations. For example:
Appending: O(1)
Inserting/Deleting: O(n)
Searching: O(n)

Memory Usage: Lists can consume a lot of memory for large datasets. Consider
using generators or arrays (from the array module) for memory efficiency.

Example Program

Working with Lists

List comprehensions
squares = [x ** 2 for x in range(1, 6)]
print("Squares:", squares) # Output: [1, 4, 9, 16, 25]

Nested list comprehensions
matrix = [[i + j for j in range(3)] for i in range(3)]
print("Matrix:", matrix) # Output: [[0, 1, 2], [1, 2, 3], [2, 3, 4]]

Slicing with steps
numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print("Every second element:", numbers[::2]) # Output: [0, 2, 4, 6, 8]
print("Reversed list:", numbers[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

List unpacking
fruits = ["apple", "banana", "cherry"]
a, b, c = fruits
print("Unpacked:", a, b, c) # Output: apple banana cherry

Zip and unzip lists
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]

In [175…

In [178…

zipped = list(zip(names, ages))
print("Zipped:", zipped) # Output: [('Alice', 25), ('Bob', 30), ('Charlie', 35)
names_unzipped, ages_unzipped = zip(*zipped)
print("Unzipped names:", names_unzipped) # Output: ('Alice', 'Bob', 'Charlie')
print("Unzipped ages:", ages_unzipped) # Output: (25, 30, 35)

List methods
numbers = [3, 1, 4, 1, 5, 9]
numbers.sort()
print("Sorted:", numbers) # Output: [1, 1, 3, 4, 5, 9]
numbers.reverse()
print("Reversed:", numbers) # Output: [9, 5, 4, 3, 1, 1]

Squares: [1, 4, 9, 16, 25]
Matrix: [[0, 1, 2], [1, 2, 3], [2, 3, 4]]
Every second element: [0, 2, 4, 6, 8]
Reversed list: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Unpacked: apple banana cherry
Zipped: [('Alice', 25), ('Bob', 30), ('Charlie', 35)]
Unzipped names: ('Alice', 'Bob', 'Charlie')
Unzipped ages: (25, 30, 35)
Sorted: [1, 1, 3, 4, 5, 9]
Reversed: [9, 5, 4, 3, 1, 1]

3. Tuples
Tuples are another fundamental data structure in Python. They are similar to lists but
with one key difference: tuples are immutable. This means that once a tuple is created,
its elements cannot be changed, added, or removed. Tuples are often used for fixed
collections of items, such as coordinates or database records.

What Are Tuples?

A tuple is an ordered, immutable collection of items. Tuples are defined using
parentheses () .

Example:

coordinates = (10.0, 20.0)
fruits = ("apple", "banana", "cherry")
mixed = (1, "apple", 3.14, True)

Creating Tuples

You can create a tuple by enclosing elements in parentheses () . If a tuple has only one
element, you must include a trailing comma to distinguish it from a regular value.

In [181…

Example:

Single-element tuple
single = (42,)

Multiple elements
multiple = (1, 2, 3)

Accessing Tuple Elements

You can access tuple elements using indexing and slicing, just like lists.

Example:

fruits = ("apple", "banana", "cherry")

Access by index
print(fruits[0]) # Output: apple

Negative indexing
print(fruits[-1]) # Output: cherry

Slicing
print(fruits[1:3]) # Output: ('banana', 'cherry')

apple
cherry
('banana', 'cherry')

Tuples Are Immutable

Once a tuple is created, you cannot modify its elements. Attempting to do so will raise a
TypeError .

Example:

fruits = ("apple", "banana", "cherry")

This will raise an error
fruits[0] = "orange" # TypeError: 'tuple' object does not support item assignme

In [184…

In [187…

In [194…

TypeError Traceback (most recent call last)
Cell In[194], line 4
 1 fruits = ("apple", "banana", "cherry")
 3 # This will raise an error
----> 4 fruits[0] = "orange"

TypeError: 'tuple' object does not support item assignment

Tuple Operations

1. Concatenation: Combine two tuples using the + operator.

 tuple1 = (1, 2, 3)
 tuple2 = (4, 5, 6)
 combined = tuple1 + tuple2
 print(combined) # Output: (1, 2, 3, 4, 5, 6)

(1, 2, 3, 4, 5, 6)

2. Repetition: Repeat a tuple using the * operator.

 repeated = (1, 2) * 3
 print(repeated) # Output: (1, 2, 1, 2, 1, 2)

(1, 2, 1, 2, 1, 2)

3. Membership: Check if an element exists in a tuple using the in keyword.

 fruits = ("apple", "banana", "cherry")
 print("banana" in fruits) # Output: True

True

4. Length: Get the number of elements in a tuple using the len() function.

 print(len(fruits)) # Output: 3

3

Tuple Unpacking

You can unpack a tuple into individual variables. This is useful for assigning multiple
values at once.

Example:

In [197…

In [200…

In [203…

In [206…

coordinates = (10.0, 20.0)
x, y = coordinates
print(x, y) # Output: 10.0 20.0

10.0 20.0

Using Tuples as Dictionary Keys

Because tuples are immutable, they can be used as keys in dictionaries, unlike lists.

Example:

location = {
 (40.7128, -74.0060): "New York",
 (34.0522, -118.2437): "Los Angeles"
}

print(location[(40.7128, -74.0060)]) # Output: New York

New York

Tuple Methods

Tuples have only two built-in methods:

1. count() : Returns the number of occurrences of a value.

 numbers = (1, 2, 3, 1, 2, 1)
 print(numbers.count(1)) # Output: 3

3

2. index() : Returns the index of the first occurrence of a value.

 print(numbers.index(2)) # Output: 1

1

When to Use Tuples

Use tuples when you need an immutable collection of items.
Use tuples for fixed data, such as coordinates, database records, or function
arguments.
Use tuples as dictionary keys.

In [209…

In [212…

In [215…

In [218…

Example Program

Working with Tuples

Creating tuples
coordinates = (10.0, 20.0)
fruits = ("apple", "banana", "cherry")
single = (42,)

Accessing elements
print("First fruit:", fruits[0]) # Output: apple
print("Last fruit:", fruits[-1]) # Output: cherry
print("Sliced fruits:", fruits[1:3]) # Output: ('banana', 'cherry')

Tuple operations
tuple1 = (1, 2, 3)
tuple2 = (4, 5, 6)
combined = tuple1 + tuple2
print("Combined tuple:", combined) # Output: (1, 2, 3, 4, 5, 6)

repeated = (1, 2) * 3
print("Repeated tuple:", repeated) # Output: (1, 2, 1, 2, 1, 2)

Membership
print("Is 'banana' in fruits?", "banana" in fruits) # Output: True

Length
print("Number of fruits:", len(fruits)) # Output: 3

Tuple unpacking
x, y = coordinates
print("Coordinates:", x, y) # Output: 10.0 20.0

Using tuples as dictionary keys
location = {
 (40.7128, -74.0060): "New York",
 (34.0522, -118.2437): "Los Angeles"
}
print("Location:", location[(40.7128, -74.0060)]) # Output: New York

Tuple methods
numbers = (1, 2, 3, 1, 2, 1)
print("Count of 1:", numbers.count(1)) # Output: 3
print("Index of 2:", numbers.index(2)) # Output: 1

In [223…

First fruit: apple
Last fruit: cherry
Sliced fruits: ('banana', 'cherry')
Combined tuple: (1, 2, 3, 4, 5, 6)
Repeated tuple: (1, 2, 1, 2, 1, 2)
Is 'banana' in fruits? True
Number of fruits: 3
Coordinates: 10.0 20.0
Location: New York
Count of 1: 3
Index of 2: 1

4. Dictionaries
Dictionaries are one of Python’s most powerful and versatile data structures. They store
data in key-value pairs, allowing you to quickly retrieve values based on their keys.
Dictionaries are unordered (in Python versions before 3.7), mutable, and optimized for
fast lookups.

What Are Dictionaries?

A dictionary is a collection of key-value pairs, where each key is unique. Dictionaries are
defined using curly braces {} or the dict() constructor.

Example:

Using curly braces
person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Using dict() constructor
person = dict(name="Alice", age=25, city="New York")

Accessing Dictionary Values

You can access values in a dictionary using their keys. If the key does not exist, Python
will raise a KeyError . To avoid this, you can use the get() method, which returns
None (or a default value) if the key is not found.

Example:

person = {
 "name": "Alice",

In [226…

In [229…

 "age": 25,
 "city": "New York"
}

Accessing values
print(person["name"]) # Output: Alice
print(person.get("age")) # Output: 25

Handling missing keys
print(person.get("country", "Unknown")) # Output: Unknown

Alice
25
Unknown

Adding or Updating Dictionary Entries

You can add a new key-value pair or update an existing one by assigning a value to a
key.

Example:

person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Adding a new key-value pair
person["country"] = "USA"

Updating an existing key
person["age"] = 26

print(person)
Output: {'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

Removing Dictionary Entries

You can remove key-value pairs using:

1. del : Deletes the key-value pair.

 del person["city"]
 print(person) # Output: {'name': 'Alice', 'age': 26, 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'country': 'USA'}

In [258…

In [235…

2. pop() : Removes the key-value pair and returns the value.

 age = person.pop("age")
 print(age) # Output: 26
 print(person) # Output: {'name': 'Alice', 'country': 'USA'}

26
{'name': 'Alice', 'country': 'USA'}

3. popitem() : Removes and returns the last inserted key-value pair (Python 3.7+).

 last_item = person.popitem()
 print(last_item) # Output: ('country', 'USA')
 print(person) # Output: {'name': 'Alice'}

('country', 'USA')
{'name': 'Alice'}

4. clear() : Removes all key-value pairs from the dictionary.

 person.clear()
 print(person) # Output: {}

{}

Dictionary Methods

Here are some commonly used dictionary methods:

1. keys() : Returns a list of all keys.

 print(person.keys()) # Output: dict_keys(['name', 'age', 'city'])

dict_keys(['name', 'age', 'city', 'country'])

2. values() : Returns a list of all values.

 print(person.values()) # Output: dict_values(['Alice', 25, 'New York'])

dict_values(['Alice', 26, 'New York', 'USA'])

3. items() : Returns a list of key-value pairs as tuples.

 print(person.items()) # Output: dict_items([('name', 'Alice'), ('age', 25),

dict_items([('name', 'Alice'), ('age', 26), ('city', 'New York'), ('country', 'US
A')])

In [238…

In [241…

In [244…

In [260…

In [262…

In [264…

4. update() : Merges another dictionary into the current one.

 person.update({"country": "USA", "age": 26})
 print(person) # Output: {'name': 'Alice', 'age': 26, 'city': 'New York', 'co

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

5. copy() : Returns a shallow copy of the dictionary.

 person_copy = person.copy()
 print(person_copy)

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

Dictionary Comprehensions

Similar to list comprehensions, dictionary comprehensions allow you to create
dictionaries in a concise way.

Syntax:

{key_expression: value_expression for item in iterable}

Example:

Create a dictionary of squares
squares = {x: x ** 2 for x in range(1, 6)}
print(squares) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested Dictionaries

Dictionaries can contain other dictionaries, allowing you to create complex data
structures.

Example:

students = {
 "Alice": {"age": 25, "grade": "A"},
 "Bob": {"age": 22, "grade": "B"},
 "Charlie": {"age": 23, "grade": "C"}
}

Accessing nested dictionary values
print(students["Alice"]["age"]) # Output: 25

In [267…

In [270…

In []:

In [274…

In [279…

25

Example Program

Working with Dictionaries

Creating a dictionary
person = {
 "name": "Alice",
 "age": 25,
 "city": "New York"
}

Accessing values
print("Name:", person["name"]) # Output: Alice
print("Age:", person.get("age")) # Output: 25

Adding/updating entries
person["country"] = "USA"
person["age"] = 26

Removing entries
del person["city"]
age = person.pop("age")
last_item = person.popitem()

Dictionary methods
print("Keys:", person.keys()) # Output: dict_keys(['name'])
print("Values:", person.values()) # Output: dict_values(['Alice'])
print("Items:", person.items()) # Output: dict_items([('name', 'Alice')])

Dictionary comprehension
squares = {x: x ** 2 for x in range(1, 6)}
print("Squares:", squares) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested dictionaries
students = {
 "Alice": {"age": 25, "grade": "A"},
 "Bob": {"age": 22, "grade": "B"},
 "Charlie": {"age": 23, "grade": "C"}
}
print("Alice's age:", students["Alice"]["age"]) # Output: 25

Name: Alice
Age: 25
Keys: dict_keys(['name'])
Values: dict_values(['Alice'])
Items: dict_items([('name', 'Alice')])
Squares: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
Alice's age: 25

In [282…

5. Sets
A set is an unordered collection of unique elements. Sets are useful for tasks that involve
membership testing, removing duplicates, and performing mathematical operations like
unions, intersections, and differences.

What Are Sets?

Sets are defined using curly braces {} or the set() constructor.
Sets do not allow duplicate elements. If you try to add a duplicate, it will be ignored.
Sets are unordered, meaning the elements are not stored in any specific order.

Example:

Using curly braces
fruits = {"apple", "banana", "cherry"}

Using set() constructor
numbers = set([1, 2, 3, 4, 5])

Creating Sets

You can create a set by enclosing elements in curly braces {} or by passing an iterable
(e.g., a list) to the set() constructor.

Example:

Creating a set with curly braces
fruits = {"apple", "banana", "cherry"}

Creating a set with set() constructor
numbers = set([1, 2, 3, 4, 5])

Creating an empty set
empty_set = set() # Note: {} creates an empty dictionary, not a set

Adding and Removing Elements

1. Adding Elements: Use the add() method to add a single element or the
update() method to add multiple elements.

 fruits = {"apple", "banana", "cherry"}

 # Add a single element
 fruits.add("orange")

In [285…

In [288…

In [331…

 # Add multiple elements
 fruits.update(["mango", "grape"])

 print(fruits) # Output: {'apple', 'banana', 'cherry', 'orange', 'mango', 'gr

{'orange', 'cherry', 'apple', 'banana', 'mango', 'grape'}

2. Removing Elements:
remove() : Removes a specific element. Raises a KeyError if the element is

not found.

 fruits.remove("banana")
 print(fruits) # Output: {'apple', 'cherry', 'orange', 'mango', 'grape'}

{'orange', 'cherry', 'apple', 'mango', 'grape'}

discard() : Removes a specific element if it exists. Does not raise an error if the
element is not found.

 fruits.discard("banana") # No error if "banana" is not in the set

clear() : Removes all elements from the set.

 fruits.clear()
 print(fruits) # Output: set()

set()

Set Operations

Sets support mathematical operations like unions, intersections, differences, and
symmetric differences.

1. Union (|): Combines elements from two sets.

 set1 = {1, 2, 3}
 set2 = {3, 4, 5}
 union_set = set1 | set2
 print(union_set) # Output: {1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}

2. Intersection (&): Returns elements common to both sets.

 intersection_set = set1 & set2
 print(intersection_set) # Output: {3}

In [335…

In [307…

In [310…

In [315…

In [320…

{3}

3. Difference (-): Returns elements in the first set that are not in the second set.

 difference_set = set1 - set2
 print(difference_set) # Output: {1, 2}

{1, 2}

4. Symmetric Difference (^): Returns elements that are in either set but not in both.

 symmetric_difference_set = set1 ^ set2
 print(symmetric_difference_set) # Output: {1, 2, 4, 5}

{1, 2, 4, 5}

Set Methods

Here are some commonly used set methods:

1. len() : Returns the number of elements in the set.

 print(len(fruits)) # Output: 5

5

2. in : Checks if an element exists in the set.

 print("apple" in fruits) # Output: True

True

3. issubset() : Checks if one set is a subset of another.

 set1 = {1, 2}
 set2 = {1, 2, 3, 4}
 print(set1.issubset(set2)) # Output: True

True

4. issuperset() : Checks if one set is a superset of another.

 print(set2.issuperset(set1)) # Output: True

True

5. isdisjoint() : Checks if two sets have no common elements.

In [323…

In [326…

In [337…

In [340…

In [343…

In [346…

 set3 = {5, 6}
 print(set1.isdisjoint(set3)) # Output: True

True

Set Comprehensions

Similar to list comprehensions, set comprehensions allow you to create sets in a concise
way.

Syntax:

{expression for item in iterable if condition}

Example:

Create a set of squares
squares = {x ** 2 for x in range(1, 6)}
print(squares) # Output: {1, 4, 9, 16, 25}

{1, 4, 9, 16, 25}

Example Program

Working with Sets

Creating sets
fruits = {"apple", "banana", "cherry"}
numbers = set([1, 2, 3, 4, 5])

Adding elements
fruits.add("orange")
fruits.update(["mango", "grape"])

Removing elements
fruits.remove("banana")
fruits.discard("banana") # No error if "banana" is not in the set
removed_fruit = fruits.pop()
fruits.clear()

Set operations
set1 = {1, 2, 3}
set2 = {3, 4, 5}
union_set = set1 | set2
intersection_set = set1 & set2
difference_set = set1 - set2
symmetric_difference_set = set1 ^ set2

Set methods

In [349…

In []:

In [355…

In [358…

print(len(fruits)) # Output: 0
print("apple" in fruits) # Output: False
print(set1.issubset(set2)) # Output: False
print(set2.issuperset(set1)) # Output: False
print(set1.isdisjoint(set2)) # Output: False

Set comprehension
squares = {x ** 2 for x in range(1, 6)}
print("Squares:", squares) # Output: {1, 4, 9, 16, 25}

0
False
False
False
False
Squares: {1, 4, 9, 16, 25}

6. Strings
Strings are one of the most commonly used data types in Python. They are used to
represent text and are defined using single quotes ' ' , double quotes " " , or triple
quotes ''' ''' or """ """ . In this section, we’ll explore advanced string operations,
formatting, and manipulation techniques.

What Are Strings?

A string is a sequence of characters. Strings are immutable, meaning once a string is
created, it cannot be changed. However, you can create new strings based on existing
ones.

Example:

Using single quotes
message1 = 'Hello, World!'

Using double quotes
message2 = "Python is fun!"

Using triple quotes for multi-line strings
message3 = """This is a
multi-line string."""

Accessing String Characters

You can access individual characters in a string using indexing. Python uses zero-based
indexing, meaning the first character has an index of 0 .

In [1]:

Example:

text = "Python"

Accessing characters
print(text[0]) # Output: P
print(text[3]) # Output: h

Negative indexing (starts from the end)
print(text[-1]) # Output: n

P
h
n

String Slicing

You can extract a substring using slicing. The syntax is [start:stop:step] .

Example:

text = "Python Programming"

Extract "Python"
print(text[0:6]) # Output: Python

Extract "Programming"
print(text[7:18]) # Output: Programming

Extract every second character
print(text[::2]) # Output: Pto rgamn

Python
Programming
Pto rgamn

String Methods

Python provides many built-in methods for working with strings. Here are some
commonly used ones:

1. upper() : Converts the string to uppercase.

 print("hello".upper()) # Output: HELLO

HELLO

2. lower() : Converts the string to lowercase.

In [2]:

In [3]:

In [4]:

 print("HELLO".lower()) # Output: hello

hello

3. strip() : Removes leading and trailing whitespace.

 print(" hello ".strip()) # Output: hello

hello

4. replace() : Replaces a substring with another substring.

 print("hello world".replace("world", "Python")) # Output: hello Python

hello Python

5. split() : Splits the string into a list of substrings based on a delimiter.

 print("apple,banana,cherry".split(",")) # Output: ['apple', 'banana', 'cherr

['apple', 'banana', 'cherry']

6. join() : Joins a list of strings into a single string using a delimiter.

 print(", ".join(["apple", "banana", "cherry"])) # Output: apple, banana, che

apple, banana, cherry

7. find() : Returns the index of the first occurrence of a substring. Returns -1 if not
found.

 print("hello world".find("world")) # Output: 6

6

8. count() : Returns the number of occurrences of a substring.

 print("hello world".count("l")) # Output: 3

3

9. startswith() : Checks if the string starts with a specific substring.

 print("hello world".startswith("hello")) # Output: True

True

10. endswith() : Checks if the string ends with a specific substring.

In [5]:

In [6]:

In [7]:

In [8]:

In [10]:

In [11]:

In [12]:

In [13]:

 print("hello world".endswith("world")) # Output: True

True

String Formatting

Python provides several ways to format strings:

1. f-strings (Python 3.6+): Embed expressions inside string literals.

 name = "Alice"
 age = 25
 print(f"My name is {name} and I am {age} years old.")

My name is Alice and I am 25 years old.

2. format() method: Insert values into placeholders {} .

 print("My name is {} and I am {} years old.".format(name, age))

My name is Alice and I am 25 years old.

3. % operator (older style):

 print("My name is %s and I am %d years old." % (name, age))

My name is Alice and I am 25 years old.

Escape Characters

Escape characters are used to include special characters in strings:

\n : Newline
\t : Tab
\\ : Backslash
\" : Double quote
\' : Single quote

Example:

print("Hello\nWorld") # Output: Hello
 # World

Hello
World

In [14]:

In [15]:

In [16]:

In [17]:

In [18]:

Raw Strings

Raw strings ignore escape characters and treat backslashes as literal characters. They are
prefixed with an r .

Example:

print(r"C:\Users\Alice\Documents") # Output: C:\Users\Alice\Documents

C:\Users\Alice\Documents

String Membership

You can check if a substring exists in a string using the in keyword.

Example:

text = "Python is fun"
print("fun" in text) # Output: True

True

Example Program

Working with Strings

Creating strings
message1 = 'Hello, World!'
message2 = "Python is fun!"
message3 = """This is a
multi-line string."""

Accessing characters
text = "Python"
print("First character:", text[0]) # Output: P
print("Last character:", text[-1]) # Output: n

String slicing
print("Sliced string:", text[0:4]) # Output: Pyth
print("Every second character:", text[::2]) # Output: Pto

String methods
print("Uppercase:", "hello".upper()) # Output: HELLO
print("Lowercase:", "HELLO".lower()) # Output: hello
print("Stripped:", " hello ".strip()) # Output: hello
print("Replaced:", "hello world".replace("world", "Python")) # Output: hello Py
print("Split:", "apple,banana,cherry".split(",")) # Output: ['apple', 'banana',
print("Joined:", ", ".join(["apple", "banana", "cherry"])) # Output: apple, ban
print("Found at index:", "hello world".find("world")) # Output: 6

In [19]:

In [20]:

In [21]:

print("Count of 'l':", "hello world".count("l")) # Output: 3
print("Starts with 'hello':", "hello world".startswith("hello")) # Output: True
print("Ends with 'world':", "hello world".endswith("world")) # Output: True

String formatting
name = "Alice"
age = 25
print(f"My name is {name} and I am {age} years old.") # Output: My name is Alic
print("My name is {} and I am {} years old.".format(name, age)) # Output: My na
print("My name is %s and I am %d years old." % (name, age)) # Output: My name i

Escape characters
print("Hello\nWorld") # Output: Hello
 # World

Raw strings
print(r"C:\Users\Alice\Documents") # Output: C:\Users\Alice\Documents

String membership
print("Is 'fun' in the text?", "fun" in "Python is fun") # Output: True

First character: P
Last character: n
Sliced string: Pyth
Every second character: Pto
Uppercase: HELLO
Lowercase: hello
Stripped: hello
Replaced: hello Python
Split: ['apple', 'banana', 'cherry']
Joined: apple, banana, cherry
Found at index: 6
Count of 'l': 3
Starts with 'hello': True
Ends with 'world': True
My name is Alice and I am 25 years old.
My name is Alice and I am 25 years old.
My name is Alice and I am 25 years old.
Hello
World
C:\Users\Alice\Documents
Is 'fun' in the text? True

7. Collections
The collections module in Python provides specialized container data types that are
alternatives to the built-in types like list , tuple , dict , and set . These data types
are optimized for specific use cases and can make your code more efficient and readable.

What is the collections Module?

The collections module includes the following data structures:

1. namedtuple : Creates tuple-like objects with named fields.
2. deque : A double-ended queue for fast appends and pops.
3. Counter : A dictionary subclass for counting hashable objects.
4. defaultdict : A dictionary subclass that provides default values for missing keys.
5. OrderedDict : A dictionary subclass that remembers the order of insertion (less

relevant in Python 3.7+, where regular dictionaries are ordered).
6. ChainMap : Combines multiple dictionaries into a single mapping.

1. namedtuple

A namedtuple is a factory function for creating tuple-like objects with named fields. It
makes code more readable by allowing access to elements by name instead of index.

Syntax:

from collections import namedtuple
NamedTuple = namedtuple("NamedTuple", ["field1", "field2", ...])

Example:

from collections import namedtuple

Define a namedtuple
Point = namedtuple("Point", ["x", "y"])

Create an instance
p = Point(10, 20)

Access fields by name
print(p.x, p.y) # Output: 10 20

10 20

2. deque

A deque (double-ended queue) is optimized for fast appends and pops from both
ends. It is more efficient than a list for operations that involve adding or removing
elements from the beginning.

Syntax:

from collections import deque
d = deque([iterable])

In [22]:

In [23]:

In []:

Example:

from collections import deque

Create a deque
d = deque([1, 2, 3])

Append to the right
d.append(4) # deque([1, 2, 3, 4])

Append to the left
d.appendleft(0) # deque([0, 1, 2, 3, 4])

Pop from the right
d.pop() # Returns 4, deque([0, 1, 2, 3])

Pop from the left
d.popleft() # Returns 0, deque([1, 2, 3])

0

3. Counter

A Counter is a dictionary subclass for counting hashable objects. It is useful for tallying
occurrences of elements in a collection.

Syntax:

from collections import Counter
c = Counter([iterable])

Example:

from collections import Counter

Count occurrences of elements
c = Counter(["apple", "banana", "apple", "cherry", "banana", "apple"])

print(c) # Output: Counter({'apple': 3, 'banana': 2, 'cherry': 1})

Most common elements
print(c.most_common(2)) # Output: [('apple', 3), ('banana', 2)]

Counter({'apple': 3, 'banana': 2, 'cherry': 1})
[('apple', 3), ('banana', 2)]

4. defaultdict

In [25]:

Out[25]:

In []:

In [26]:

A defaultdict is a dictionary subclass that provides default values for missing keys. It
eliminates the need to check if a key exists before accessing it.

Syntax:

from collections import defaultdict
d = defaultdict(default_factory)

Example:

from collections import defaultdict

Default value for missing keys is an empty list
d = defaultdict(list)

Add elements
d["fruits"].append("apple")
d["fruits"].append("banana")

print(d) # Output: defaultdict(<class 'list'>, {'fruits': ['apple', 'banana']})

defaultdict(<class 'list'>, {'fruits': ['apple', 'banana']})

5. OrderedDict

An OrderedDict is a dictionary subclass that remembers the order of insertion. In
Python 3.7+, regular dictionaries are ordered by default, so this is less commonly needed.

Syntax:

from collections import OrderedDict
od = OrderedDict([items])

Example:

from collections import OrderedDict

Create an OrderedDict
od = OrderedDict()
od["a"] = 1
od["b"] = 2
od["c"] = 3

print(od) # Output: OrderedDict([('a', 1), ('b', 2), ('c', 3)])

OrderedDict({'a': 1, 'b': 2, 'c': 3})

6. ChainMap

In []:

In [27]:

In []:

In [28]:

A ChainMap combines multiple dictionaries into a single mapping. It is useful for
searching through multiple dictionaries as if they were one.

Syntax:

from collections import ChainMap
cm = ChainMap(dict1, dict2, ...)

Example:

from collections import ChainMap

Create dictionaries
dict1 = {"a": 1, "b": 2}
dict2 = {"b": 3, "c": 4}

Combine dictionaries
cm = ChainMap(dict1, dict2)

Access values
print(cm["a"]) # Output: 1 (from dict1)
print(cm["b"]) # Output: 2 (from dict1, first match)
print(cm["c"]) # Output: 4 (from dict2)

1
2
4

Example Program

Working with Collections

namedtuple
from collections import namedtuple
Point = namedtuple("Point", ["x", "y"])
p = Point(10, 20)
print("Point:", p.x, p.y) # Output: 10 20

deque
from collections import deque
d = deque([1, 2, 3])
d.append(4)
d.appendleft(0)
print("Deque:", d) # Output: deque([0, 1, 2, 3, 4])

Counter
from collections import Counter
c = Counter(["apple", "banana", "apple", "cherry", "banana", "apple"])
print("Counter:", c) # Output: Counter({'apple': 3, 'banana': 2, 'cherry': 1})
print("Most common:", c.most_common(2)) # Output: [('apple', 3), ('banana', 2)]

In []:

In [29]:

In [30]:

defaultdict
from collections import defaultdict
d = defaultdict(list)
d["fruits"].append("apple")
d["fruits"].append("banana")
print("DefaultDict:", d) # Output: defaultdict(<class 'list'>, {'fruits': ['app

OrderedDict
from collections import OrderedDict
od = OrderedDict()
od["a"] = 1
od["b"] = 2
od["c"] = 3
print("OrderedDict:", od) # Output: OrderedDict([('a', 1), ('b', 2), ('c', 3)])

ChainMap
from collections import ChainMap
dict1 = {"a": 1, "b": 2}
dict2 = {"b": 3, "c": 4}
cm = ChainMap(dict1, dict2)
print("ChainMap:", cm["a"], cm["b"], cm["c"]) # Output: 1 2 4

Point: 10 20
Deque: deque([0, 1, 2, 3, 4])
Counter: Counter({'apple': 3, 'banana': 2, 'cherry': 1})
Most common: [('apple', 3), ('banana', 2)]
DefaultDict: defaultdict(<class 'list'>, {'fruits': ['apple', 'banana']})
OrderedDict: OrderedDict({'a': 1, 'b': 2, 'c': 3})
ChainMap: 1 2 4

8. Itertools
The itertools module in Python provides a collection of tools for working with
iterators. These tools are designed to be fast, memory-efficient, and easy to use. They are
particularly useful for tasks involving iteration, combinations, permutations, and more.

What is the itertools Module?

The itertools module includes functions for:

Infinite iterators: Generate infinite sequences.
Combinatoric iterators: Generate combinations, permutations, and Cartesian
products.
Terminating iterators: Process finite iterables in useful ways.

Common itertools Functions

1. Infinite Iterators
count() : Generates an infinite sequence of numbers.

 import itertools

 for i in itertools.count(start=1, step=2):
 if i > 10:
 break
 print(i, end=" ") # Output: 1 3 5 7 9

1 3 5 7 9

cycle() : Cycles through an iterable infinitely.

 for item in itertools.cycle(["A", "B", "C"]):
 if item == "C":
 break
 print(item, end=" ") # Output: A B

A B

repeat() : Repeats an element infinitely or a specified number of times.

 for item in itertools.repeat("Python", 3):
 print(item, end=" ") # Output: Python Python Python

Python Python Python

2. Combinatoric Iterators
product() : Computes the Cartesian product of input iterables.

 for item in itertools.product("AB", repeat=2):
 print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('B', 'A') ('B',

('A', 'A') ('A', 'B') ('B', 'A') ('B', 'B')

permutations() : Generates all possible permutations of an iterable.

 for item in itertools.permutations("ABC", 2):
 print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'A') ('B',

('A', 'B') ('A', 'C') ('B', 'A') ('B', 'C') ('C', 'A') ('C', 'B')

combinations() : Generates all possible combinations of an iterable.

 for item in itertools.combinations("ABC", 2):
 print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'C')

('A', 'B') ('A', 'C') ('B', 'C')

In [31]:

In [32]:

In [33]:

In [34]:

In [35]:

In [36]:

combinations_with_replacement() : Generates combinations with repeated
elements.

 for item in itertools.combinations_with_replacement("ABC", 2):
 print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('A', 'C') ('B',

('A', 'A') ('A', 'B') ('A', 'C') ('B', 'B') ('B', 'C') ('C', 'C')

3. Terminating Iterators
accumulate() : Returns accumulated sums or results of a binary function.

 for item in itertools.accumulate([1, 2, 3, 4]):
 print(item, end=" ") # Output: 1 3 6 10

1 3 6 10

chain() : Chains multiple iterables together.

 for item in itertools.chain("ABC", "DEF"):
 print(item, end=" ") # Output: A B C D E F

A B C D E F

compress() : Filters elements using a boolean mask.

 for item in itertools.compress("ABCDEF", [1, 0, 1, 0, 1, 0]):
 print(item, end=" ") # Output: A C E

A C E

dropwhile() : Drops elements until a condition is false.

 for item in itertools.dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]):
 print(item, end=" ") # Output: 6 4 1

6 4 1

takewhile() : Takes elements until a condition is false.

 for item in itertools.takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]):
 print(item, end=" ") # Output: 1 4

1 4

groupby() : Groups elements by a key function.

In [37]:

In [38]:

In [39]:

In [40]:

In [41]:

In [42]:

 data = [("A", 1), ("A", 2), ("B", 3), ("B", 4)]
 for key, group in itertools.groupby(data, lambda x: x[0]):
 print(key, list(group))
 # Output:
 # A [('A', 1), ('A', 2)]
 # B [('B', 3), ('B', 4)]

A [('A', 1), ('A', 2)]
B [('B', 3), ('B', 4)]

Example Program

Working with Itertools

Infinite iterators
import itertools

print("Count:")
for i in itertools.count(start=1, step=2):
 if i > 10:
 break
 print(i, end=" ") # Output: 1 3 5 7 9

print("\nCycle:")
for item in itertools.cycle(["A", "B", "C"]):
 if item == "C":
 break
 print(item, end=" ") # Output: A B

print("\nRepeat:")
for item in itertools.repeat("Python", 3):
 print(item, end=" ") # Output: Python Python Python

Combinatoric iterators
print("\nProduct:")
for item in itertools.product("AB", repeat=2):
 print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('B', 'A') ('B', 'B')

print("\nPermutations:")
for item in itertools.permutations("ABC", 2):
 print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'A') ('B', 'C')

print("\nCombinations:")
for item in itertools.combinations("ABC", 2):
 print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'C')

print("\nCombinations with Replacement:")
for item in itertools.combinations_with_replacement("ABC", 2):
 print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('A', 'C') ('B', 'B')

Terminating iterators
print("\nAccumulate:")

In [43]:

In [44]:

for item in itertools.accumulate([1, 2, 3, 4]):
 print(item, end=" ") # Output: 1 3 6 10

print("\nChain:")
for item in itertools.chain("ABC", "DEF"):
 print(item, end=" ") # Output: A B C D E F

print("\nCompress:")
for item in itertools.compress("ABCDEF", [1, 0, 1, 0, 1, 0]):
 print(item, end=" ") # Output: A C E

print("\nDropwhile:")
for item in itertools.dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]):
 print(item, end=" ") # Output: 6 4 1

print("\nTakewhile:")
for item in itertools.takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]):
 print(item, end=" ") # Output: 1 4

print("\nGroupby:")
data = [("A", 1), ("A", 2), ("B", 3), ("B", 4)]
for key, group in itertools.groupby(data, lambda x: x[0]):
 print(key, list(group))
Output:
A [('A', 1), ('A', 2)]
B [('B', 3), ('B', 4)]

Count:
1 3 5 7 9
Cycle:
A B
Repeat:
Python Python Python
Product:
('A', 'A') ('A', 'B') ('B', 'A') ('B', 'B')
Permutations:
('A', 'B') ('A', 'C') ('B', 'A') ('B', 'C') ('C', 'A') ('C', 'B')
Combinations:
('A', 'B') ('A', 'C') ('B', 'C')
Combinations with Replacement:
('A', 'A') ('A', 'B') ('A', 'C') ('B', 'B') ('B', 'C') ('C', 'C')
Accumulate:
1 3 6 10
Chain:
A B C D E F
Compress:
A C E
Dropwhile:
6 4 1
Takewhile:
1 4
Groupby:
A [('A', 1), ('A', 2)]
B [('B', 3), ('B', 4)]

9. Lambda Functions
Lambda functions (also called anonymous functions) are small, inline functions
defined using the lambda keyword. They are useful for short, throwaway functions that
are used only once or in situations where defining a full function using def would be
overkill.

What Are Lambda Functions?

A lambda function is a function without a name. It can take any number of arguments
but can only have one expression. The result of the expression is automatically returned.

Syntax:

lambda arguments: expression

Example of a Lambda Function

Here’s a simple lambda function that adds two numbers:

add = lambda x, y: x + y
print(add(3, 5)) # Output: 8

8

When to Use Lambda Functions

Lambda functions are typically used in situations where a small function is needed for a
short period of time, such as:

As an argument to higher-order functions like map() , filter() , and sorted() .
For simple transformations or calculations.

Using Lambda Functions with map()

The map() function applies a function to all items in an iterable. Lambda functions are
often used with map() for concise transformations.

Example:

In []:

In [45]:

numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x ** 2, numbers))
print(squared) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

Using Lambda Functions with filter()

The filter() function filters elements from an iterable based on a condition. Lambda
functions are often used with filter() for concise filtering.

Example:

numbers = [1, 2, 3, 4, 5]
evens = list(filter(lambda x: x % 2 == 0, numbers))
print(evens) # Output: [2, 4]

[2, 4]

Using Lambda Functions with sorted()

The sorted() function sorts an iterable. Lambda functions can be used to define
custom sorting keys.

Example:

students = [
 {"name": "Alice", "age": 25},
 {"name": "Bob", "age": 22},
 {"name": "Charlie", "age": 23}
]

Sort by age
sorted_students = sorted(students, key=lambda x: x["age"])
print(sorted_students)
Output: [{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23}, {'name':

[{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23}, {'name': 'Alice', 'a
ge': 25}]

Lambda Functions in List Comprehensions

Lambda functions can also be used in list comprehensions for concise transformations.

Example:

In [46]:

In [47]:

In [48]:

numbers = [1, 2, 3, 4, 5]
squared = [(lambda x: x ** 2)(x) for x in numbers]
print(squared) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

Limitations of Lambda Functions

Single Expression: Lambda functions can only contain a single expression. They
cannot include statements like if , for , or while .
Readability: Overusing lambda functions can make code harder to read. For
complex logic, it’s better to use a regular function defined with def .

Example Program

Working with Lambda Functions

Basic lambda function
add = lambda x, y: x + y
print("Add:", add(3, 5)) # Output: 8

Using lambda with map()
numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x ** 2, numbers))
print("Squared:", squared) # Output: [1, 4, 9, 16, 25]

Using lambda with filter()
evens = list(filter(lambda x: x % 2 == 0, numbers))
print("Evens:", evens) # Output: [2, 4]

Using lambda with sorted()
students = [
 {"name": "Alice", "age": 25},
 {"name": "Bob", "age": 22},
 {"name": "Charlie", "age": 23}
]
sorted_students = sorted(students, key=lambda x: x["age"])
print("Sorted Students:", sorted_students)
Output: [{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23}, {'name':

Using lambda in list comprehensions
squared = [(lambda x: x ** 2)(x) for x in numbers]
print("Squared (List Comprehension):", squared) # Output: [1, 4, 9, 16, 25]

Add: 8
Squared: [1, 4, 9, 16, 25]
Evens: [2, 4]
Sorted Students: [{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23}, {'n
ame': 'Alice', 'age': 25}]
Squared (List Comprehension): [1, 4, 9, 16, 25]

In [49]:

In [50]:

10. Exceptions and Errors
In Python, exceptions are events that occur during the execution of a program that
disrupt the normal flow of instructions. When an exception occurs, Python raises an
error, which can be caught and handled to prevent the program from crashing.

Types of Errors

1. Syntax Errors: Occur when the code violates Python’s syntax rules. These are
detected before the program runs.

 print("Hello, World" # Missing closing parenthesis

2. Runtime Errors (Exceptions): Occur during the execution of the program. Examples
include:

ZeroDivisionError : Division by zero.
TypeError : Performing an operation on incompatible types.
ValueError : Passing an invalid value to a function.
FileNotFoundError : Trying to open a file that doesn’t exist.

Handling Exceptions with try/except

To handle exceptions, use a try/except block. The try block contains the code that
might raise an exception, and the except block contains the code to handle the
exception.

Syntax:

try:
 # Code that might raise an exception
except ExceptionType:
 # Code to handle the exception

Example:

try:
 result = 10 / 0
except ZeroDivisionError:
 print("Error: Division by zero!")

Error: Division by zero!

In []:

In []:

In [51]:

Handling Multiple Exceptions

You can handle multiple exceptions by specifying multiple except blocks or using a
tuple.

Example:

try:
 num = int(input("Enter a number: "))
 result = 10 / num
except ValueError:
 print("Error: Invalid input. Please enter a number.")
except ZeroDivisionError:
 print("Error: Division by zero.")

Error: Invalid input. Please enter a number.

The else Block

The else block is executed if no exceptions occur in the try block. It is useful for
code that should only run if the try block succeeds.

Example:

try:
 num = int(input("Enter a number: "))
 result = 10 / num
except ValueError:
 print("Error: Invalid input. Please enter a number.")
except ZeroDivisionError:
 print("Error: Division by zero.")
else:
 print("Result:", result)

Result: 5.0

The finally Block

The finally block is executed no matter what—whether an exception occurs or not. It
is typically used for cleanup actions, such as closing files or releasing resources.

Example:

try:
 file = open("example.txt", "r")
 content = file.read()
 print(content)
except FileNotFoundError:

In [53]:

In [54]:

In [55]:

 print("Error: File not found.")
finally:
 file.close()
 print("File closed.")

Hello, World!
File closed.

Raising Exceptions

You can raise exceptions manually using the raise keyword. This is useful for enforcing
constraints or signaling errors in your code.

Example:

def divide(a, b):
 if b == 0:
 raise ValueError("Cannot divide by zero.")
 return a / b

try:
 result = divide(10, 0)
except ValueError as e:
 print(e) # Output: Cannot divide by zero.

Cannot divide by zero.

Custom Exceptions

You can define your own exceptions by creating a new class that inherits from Python’s
built-in Exception class.

Example:

class NegativeNumberError(Exception):
 pass

def check_positive(number):
 if number < 0:
 raise NegativeNumberError("Negative numbers are not allowed.")

try:
 check_positive(-5)
except NegativeNumberError as e:
 print(e) # Output: Negative numbers are not allowed.

Negative numbers are not allowed.

In [56]:

In [57]:

Example Program

Working with Exceptions and Errors

Handling exceptions
try:
 num = int(input("Enter a number: "))
 result = 10 / num
except ValueError:
 print("Error: Invalid input. Please enter a number.")
except ZeroDivisionError:
 print("Error: Division by zero.")
else:
 print("Result:", result)
finally:
 print("Execution complete.")

Raising exceptions
def divide(a, b):
 if b == 0:
 raise ValueError("Cannot divide by zero.")
 return a / b

try:
 result = divide(10, 0)
except ValueError as e:
 print(e) # Output: Cannot divide by zero.

Custom exceptions
class NegativeNumberError(Exception):
 pass

def check_positive(number):
 if number < 0:
 raise NegativeNumberError("Negative numbers are not allowed.")

try:
 check_positive(-5)
except NegativeNumberError as e:
 print(e) # Output: Negative numbers are not allowed.

Result: 3.3333333333333335
Execution complete.
Cannot divide by zero.
Negative numbers are not allowed.

11. Logging
Logging is a way to track events that occur during the execution of a program. It is
essential for debugging, monitoring, and understanding the flow of your application.

In [58]:

Python provides a built-in logging module that makes it easy to add logging to your
code.

Why Use Logging?

Debugging: Log messages can help you identify and fix issues in your code.
Monitoring: Logs provide insights into the behavior of your application in
production.
Auditing: Logs can be used to track user actions and system events.

Logging Levels

The logging module provides several levels of logging, each representing the severity
of the event being logged. The levels, in increasing order of severity, are:

1. DEBUG : Detailed information for debugging.
2. INFO : General information about the program’s execution.
3. WARNING : Indicates a potential issue that doesn’t prevent the program from

running.
4. ERROR : Indicates a more serious issue that may prevent part of the program from

functioning.
5. CRITICAL : Indicates a critical issue that may prevent the entire program from

functioning.

Basic Logging

To use the logging module, you first need to configure it. By default, the logging
module logs messages with a severity level of WARNING or higher.

Example:

import logging

Basic logging
logging.warning("This is a warning message.")
logging.error("This is an error message.")
logging.critical("This is a critical message.")

WARNING:root:This is a warning message.
ERROR:root:This is an error message.
CRITICAL:root:This is a critical message.

Configuring Logging

In [59]:

You can configure the logging module to change the logging level, format, and output
destination.

Example:

import logging

Configure logging
logging.basicConfig(
 level=logging.DEBUG, # Set the logging level
 format="%(asctime)s - %(levelname)s - %(message)s", # Set the log format
 filename="app.log", # Log to a file
 filemode="w" # Overwrite the log file each time
)

Log messages
logging.debug("This is a debug message.")
logging.info("This is an info message.")
logging.warning("This is a warning message.")
logging.error("This is an error message.")
logging.critical("This is a critical message.")

WARNING:root:This is a warning message.
ERROR:root:This is an error message.
CRITICAL:root:This is a critical message.

The log messages will be written to app.log in the specified format.

Logging to Console and File

You can configure logging to output messages to both the console and a file using
handlers .

Example:

import logging

Create a logger
logger = logging.getLogger("my_logger")
logger.setLevel(logging.DEBUG)

Create a console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.WARNING)

Create a file handler
file_handler = logging.FileHandler("app.log")
file_handler.setLevel(logging.DEBUG)

Create a formatter

In [60]:

In [61]:

formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")

Add the formatter to the handlers
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)

Add the handlers to the logger
logger.addHandler(console_handler)
logger.addHandler(file_handler)

Log messages
logger.debug("This is a debug message.")
logger.info("This is an info message.")
logger.warning("This is a warning message.")
logger.error("This is an error message.")
logger.critical("This is a critical message.")

DEBUG:my_logger:This is a debug message.
INFO:my_logger:This is an info message.
2025-02-17 02:33:57,533 - WARNING - This is a warning message.
WARNING:my_logger:This is a warning message.
2025-02-17 02:33:57,535 - ERROR - This is an error message.
ERROR:my_logger:This is an error message.
2025-02-17 02:33:57,539 - CRITICAL - This is a critical message.
CRITICAL:my_logger:This is a critical message.

File Output (app.log):

with open('app.log', 'r') as file:
 content = file.read()
 print(content)

2025-02-17 02:33:57,514 - DEBUG - This is a debug message.
2025-02-17 02:33:57,531 - INFO - This is an info message.
2025-02-17 02:33:57,533 - WARNING - This is a warning message.
2025-02-17 02:33:57,535 - ERROR - This is an error message.
2025-02-17 02:33:57,539 - CRITICAL - This is a critical message.

Logging Exceptions

You can log exceptions using the logging.exception() method, which automatically
includes the exception traceback.

Example:

import logging

Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %

In [62]:

In [63]:

try:
 result = 10 / 0
except ZeroDivisionError:
 logging.exception("An error occurred:")

ERROR:root:An error occurred:
Traceback (most recent call last):
 File "C:\Users\attila\AppData\Local\Temp\ipykernel_10184\3197086528.py", line
7, in <module>
 result = 10 / 0
             ~~~^~~
ZeroDivisionError: division by zero

Example Program

# Working with Logging

import logging

# Configure logging
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s - %(levelname)s - %(message)s",
    filename="app.log",
    filemode="w"
)

# Log messages
logging.debug("This is a debug message.")
logging.info("This is an info message.")
logging.warning("This is a warning message.")
logging.error("This is an error message.")
logging.critical("This is a critical message.")

# Logging exceptions
try:
    result = 10 / 0
except ZeroDivisionError:
    logging.exception("An error occurred:")

WARNING:root:This is a warning message.
ERROR:root:This is an error message.
CRITICAL:root:This is a critical message.
ERROR:root:An error occurred:
Traceback (most recent call last):
  File "C:\Users\attila\AppData\Local\Temp\ipykernel_10184\351276769.py", line 2
2, in <module>
    result = 10 / 0
             ~~~^~~
ZeroDivisionError: division by zero

In [64]:

12. JSON
JSON (JavaScript Object Notation) is a lightweight data interchange format that is easy
for humans to read and write and easy for machines to parse and generate. It is widely
used for transmitting data between a server and a web application, as well as for
configuration files and data storage.

What is JSON?

JSON is a text format that represents data as key-value pairs. It is based on a subset of
JavaScript but is language-independent. JSON data is often stored in .json files or
transmitted as strings.

Example JSON:

{
 "name": "Alice",
 "age": 25,
 "is_student": false,
 "courses": ["Math", "Science"],
 "address": {
 "city": "New York",
 "zip": "10001"
 }
}

JSON Data Types

JSON supports the following data types:

Strings: Enclosed in double quotes (" ").
Numbers: Integers or floating-point numbers.
Booleans: true or false .
Arrays: Ordered lists of values, enclosed in square brackets ([]).
Objects: Unordered collections of key-value pairs, enclosed in curly braces ({}).
null : Represents an empty or non-existent value.

Working with JSON in Python

Python provides the json module to encode and decode JSON data. The two main
functions are:

json.dumps() : Converts a Python object to a JSON-formatted string.
json.loads() : Converts a JSON-formatted string to a Python object.

In []:

Encoding Python Objects to JSON

Use json.dumps() to convert a Python object (e.g., dictionary, list) to a JSON string.

Example:

import json

Python dictionary
data = {
 "name": "Alice",
 "age": 25,
 "is_student": False,
 "courses": ["Math", "Science"],
 "address": {
 "city": "New York",
 "zip": "10001"
 }
}

Convert to JSON string
json_string = json.dumps(data, indent=4) # indent for pretty printing
print(json_string)

{
 "name": "Alice",
 "age": 25,
 "is_student": false,
 "courses": [
 "Math",
 "Science"
],
 "address": {
 "city": "New York",
 "zip": "10001"
 }
}

Decoding JSON to Python Objects

Use json.loads() to convert a JSON string to a Python object.

Example:

import json

JSON string
json_string = '''
{
 "name": "Alice",
 "age": 25,

In [65]:

In [66]:

 "is_student": false,
 "courses": ["Math", "Science"],
 "address": {
 "city": "New York",
 "zip": "10001"
 }
}
'''

Convert to Python dictionary
data = json.loads(json_string)
print(data)

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math', 'Science'],
'address': {'city': 'New York', 'zip': '10001'}}

Reading and Writing JSON Files

You can read JSON data from a file and write JSON data to a file using the
json.load() and json.dump() functions.

1. Reading from a JSON File:

 import json

 # Read JSON data from a file
 with open("data.json", "r") as file:
 data = json.load(file)
 print(data)

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math', 'Science'],
'address': {'city': 'New York', 'zip': '10001'}}

2. Writing to a JSON File:

 import json

 # Python dictionary
 data = {
 "name": "Attila",
 "age": 23,
 "is_student": False,
 "courses": ["Math", "Statics"],
 "address": {
 "city": "Urmia",
 "zip": "50708"
 }
 }

 # Write JSON data to a file

In [69]:

In [70]:

 with open("data.json", "w") as file:
 json.dump(data, file, indent=4)

Handling Custom Objects

By default, the json module cannot serialize custom Python objects. To handle this, you
can define a custom encoder by subclassing json.JSONEncoder or by using the
default parameter in json.dumps() .

Example:

import json
from datetime import datetime

Custom object
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Custom encoder function
def person_encoder(obj):
 if isinstance(obj, Person):
 return {"name": obj.name, "age": obj.age}
 raise TypeError(f"Object of type {type(obj)} is not JSON serializable")

Create a Person object
person = Person("Alice", 25)

Convert to JSON string
json_string = json.dumps(person, default=person_encoder, indent=4)
print(json_string)

{
 "name": "Alice",
 "age": 25
}

Example Program

Working with JSON

import json

Python dictionary
data = {
 "name": "Alice",
 "age": 25,
 "is_student": False,

In [71]:

In [72]:

 "courses": ["Math", "Science"],
 "address": {
 "city": "New York",
 "zip": "10001"
 }
}

Convert to JSON string
json_string = json.dumps(data, indent=4)
print("JSON String:")
print(json_string)

Convert JSON string to Python dictionary
data_parsed = json.loads(json_string)
print("\nParsed Data:")
print(data_parsed)

Write JSON data to a file
with open("data.json", "w") as file:
 json.dump(data, file, indent=4)

Read JSON data from a file
with open("data.json", "r") as file:
 data_from_file = json.load(file)
 print("\nData from File:")
 print(data_from_file)

Handling custom objects
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

def person_encoder(obj):
 if isinstance(obj, Person):
 return {"name": obj.name, "age": obj.age}
 raise TypeError(f"Object of type {type(obj)} is not JSON serializable")

person = Person("Alice", 25)
json_string_custom = json.dumps(person, default=person_encoder, indent=4)
print("\nCustom Object JSON String:")
print(json_string_custom)

JSON String:
{
 "name": "Alice",
 "age": 25,
 "is_student": false,
 "courses": [
 "Math",
 "Science"
],
 "address": {
 "city": "New York",
 "zip": "10001"
 }
}

Parsed Data:
{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math', 'Science'],
'address': {'city': 'New York', 'zip': '10001'}}

Data from File:
{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math', 'Science'],
'address': {'city': 'New York', 'zip': '10001'}}

Custom Object JSON String:
{
 "name": "Alice",
 "age": 25
}

13. Random Numbers
Generating random numbers is a common task in programming, whether for simulations,
games, or security applications. Python provides the random module, which includes
functions for generating random numbers, shuffling sequences, and selecting random
elements.

The random Module

The random module is part of Python’s standard library and provides various functions
for working with randomness. To use it, you need to import the module:

import random

Generating Random Numbers

1. random.random() : Generates a random float between 0.0 and 1.0.

In [5]:

 print(random.random()) # Output: e.g., 0.3745401188473625

0.8484852847223121

2. random.uniform(a, b) : Generates a random float between a and b .

 print(random.uniform(1.5, 4.5)) # Output: e.g., 2.345678901234567

2.384758360282017

3. random.randint(a, b) : Generates a random integer between a and b
(inclusive).

 print(random.randint(1, 10)) # Output: e.g., 7

8

4. random.randrange(start, stop, step) : Generates a random integer from a
range.

 print(random.randrange(0, 100, 5)) # Output: e.g., 45

65

Selecting Random Elements

1. random.choice(seq) : Selects a random element from a sequence (e.g., list, tuple,
string).

 fruits = ["apple", "banana", "cherry"]
 print(random.choice(fruits)) # Output: e.g., "banana"

banana

2. random.choices(seq, k=n) : Selects n random elements from a sequence (with
replacement).

 print(random.choices(fruits, k=2)) # Output: e.g., ["cherry", "apple"]

['cherry', 'apple']

3. random.sample(seq, k=n) : Selects n unique random elements from a
sequence (without replacement).

 print(random.sample(fruits, 2)) # Output: e.g., ["banana", "cherry"]

['apple', 'banana']

In [7]:

In [10]:

In [13]:

In [16]:

In [19]:

In [22]:

In [25]:

Shuffling Sequences

4. random.shuffle(seq) : Shuffles a sequence in place (modifies the original
sequence).

 numbers = [1, 2, 3, 4, 5]
 random.shuffle(numbers)
 print(numbers) # Output: e.g., [3, 1, 5, 2, 4]

[4, 1, 3, 2, 5]

5. random.sample(seq, k=len(seq)) : Returns a shuffled version of the sequence
without modifying the original.

 shuffled = random.sample(numbers, k=len(numbers))
 print(shuffled) # Output: e.g., [4, 2, 5, 1, 3]

[3, 5, 4, 1, 2]

Seeding Random Numbers

The random.seed() function initializes the random number generator with a specific
seed value. This ensures that the sequence of random numbers is reproducible.

Example:

random.seed(42) # Set the seed
print(random.random()) # Output: 0.6394267984578837
print(random.random()) # Output: 0.025010755222666936

random.seed(42) # Reset the seed
print(random.random()) # Output: 0.6394267984578837 (same as before)

0.6394267984578837
0.025010755222666936
0.6394267984578837

Example Program

Working with Random Numbers

import random

Generating random numbers
print("Random float between 0.0 and 1.0:", random.random())
print("Random float between 1.5 and 4.5:", random.uniform(1.5, 4.5))

In [28]:

In [31]:

In [34]:

In [37]:

print("Random integer between 1 and 10:", random.randint(1, 10))
print("Random integer from range 0 to 100 (step 5):", random.randrange(0, 100, 5

Selecting random elements
fruits = ["apple", "banana", "cherry"]
print("Random choice from fruits:", random.choice(fruits))
print("Random choices (with replacement):", random.choices(fruits, k=2))
print("Random sample (without replacement):", random.sample(fruits, 2))

Shuffling sequences
numbers = [1, 2, 3, 4, 5]
random.shuffle(numbers)
print("Shuffled numbers:", numbers)

Seeding random numbers
random.seed(42)
print("Random number with seed 42:", random.random())
random.seed(42)
print("Random number with seed 42 (again):", random.random())

Random float between 0.0 and 1.0: 0.025010755222666936
Random float between 1.5 and 4.5: 2.3250879551073576
Random integer between 1 and 10: 4
Random integer from range 0 to 100 (step 5): 20
Random choice from fruits: cherry
Random choices (with replacement): ['apple', 'cherry']
Random sample (without replacement): ['cherry', 'apple']
Shuffled numbers: [2, 3, 1, 4, 5]
Random number with seed 42: 0.6394267984578837
Random number with seed 42 (again): 0.6394267984578837

14. Decorators
Decorators are a powerful and flexible feature in Python that allow you to modify or
extend the behavior of functions or methods without changing their actual code. They
are often used for logging, access control, memoization, and more.

What Are Decorators?

A decorator is a function that takes another function as input, adds some functionality to
it, and returns a new function. Decorators are applied using the @ symbol.

Example:

def my_decorator(func):
 def wrapper():
 print("Something is happening before the function is called.")
 func()
 print("Something is happening after the function is called.")
 return wrapper

In [40]:

@my_decorator
def say_hello():
 print("Hello!")

say_hello()

Something is happening before the function is called.
Hello!
Something is happening after the function is called.

How Decorators Work

1. The decorator function (my_decorator) takes a function (func) as an argument.
2. Inside the decorator, a new function (wrapper) is defined that adds some behavior

before and/or after calling the original function.
3. The decorator returns the wrapper function.
4. When the decorated function (say_hello) is called, the wrapper function is

executed instead.

Decorators with Arguments

If the decorated function takes arguments, the wrapper function must accept those
arguments and pass them to the original function.

Example:

def my_decorator(func):
 def wrapper(*args, **kwargs):
 print("Something is happening before the function is called.")
 result = func(*args, **kwargs)
 print("Something is happening after the function is called.")
 return result
 return wrapper

@my_decorator
def greet(name):
 print(f"Hello, {name}!")

greet("Alice")

Something is happening before the function is called.
Hello, Alice!
Something is happening after the function is called.

Chaining Decorators

In [43]:

You can apply multiple decorators to a single function. The decorators are applied from
bottom to top.

Example:

def decorator1(func):
 def wrapper():
 print("Decorator 1")
 func()
 return wrapper

def decorator2(func):
 def wrapper():
 print("Decorator 2")
 func()
 return wrapper

@decorator1
@decorator2
def say_hello():
 print("Hello!")

say_hello()

Decorator 1
Decorator 2
Hello!

Decorators with Arguments

You can create decorators that accept arguments by adding an extra layer of nesting.

Example:

def repeat(num_times):
 def decorator(func):
 def wrapper(*args, **kwargs):
 for _ in range(num_times):
 result = func(*args, **kwargs)
 return result
 return wrapper
 return decorator

@repeat(3)
def greet(name):
 print(f"Hello, {name}!")

greet("Alice")

In [46]:

In [49]:

Hello, Alice!
Hello, Alice!
Hello, Alice!

Built-in Decorators

Python provides some built-in decorators, such as:

1. @staticmethod : Defines a static method that does not depend on the instance or
class.

2. @classmethod : Defines a class method that takes the class as its first argument.
3. @property : Defines a method as a property, allowing it to be accessed like an

attribute.

Example:

class MyClass:
 @staticmethod
 def static_method():
 print("This is a static method.")

 @classmethod
 def class_method(cls):
 print(f"This is a class method of {cls.__name__}.")

 @property
 def my_property(self):
 return "This is a property."

Usage
MyClass.static_method() # Output: This is a static method.
MyClass.class_method() # Output: This is a class method of MyClass.

obj = MyClass()
print(obj.my_property) # Output: This is a property.

This is a static method.
This is a class method of MyClass.
This is a property.

Example Program

Working with Decorators

Basic decorator
def my_decorator(func):
 def wrapper():
 print("Something is happening before the function is called.")
 func()

In [52]:

In [55]:

 print("Something is happening after the function is called.")
 return wrapper

@my_decorator
def say_hello():
 print("Hello!")

say_hello()

Decorator with arguments
def my_decorator(func):
 def wrapper(*args, **kwargs):
 print("Something is happening before the function is called.")
 result = func(*args, **kwargs)
 print("Something is happening after the function is called.")
 return result
 return wrapper

@my_decorator
def greet(name):
 print(f"Hello, {name}!")

greet("Alice")

Chaining decorators
def decorator1(func):
 def wrapper():
 print("Decorator 1")
 func()
 return wrapper

def decorator2(func):
 def wrapper():
 print("Decorator 2")
 func()
 return wrapper

@decorator1
@decorator2
def say_hello():
 print("Hello!")

say_hello()

Decorator with arguments
def repeat(num_times):
 def decorator(func):
 def wrapper(*args, **kwargs):
 for _ in range(num_times):
 result = func(*args, **kwargs)
 return result
 return wrapper
 return decorator

@repeat(3)
def greet(name):
 print(f"Hello, {name}!")

greet("Alice")

Built-in decorators
class MyClass:
 @staticmethod
 def static_method():
 print("This is a static method.")

 @classmethod
 def class_method(cls):
 print(f"This is a class method of {cls.__name__}.")

 @property
 def my_property(self):
 return "This is a property."

Usage
MyClass.static_method() # Output: This is a static method.
MyClass.class_method() # Output: This is a class method of MyClass.

obj = MyClass()
print(obj.my_property) # Output: This is a property.

Something is happening before the function is called.
Hello!
Something is happening after the function is called.
Something is happening before the function is called.
Hello, Alice!
Something is happening after the function is called.
Decorator 1
Decorator 2
Hello!
Hello, Alice!
Hello, Alice!
Hello, Alice!
This is a static method.
This is a class method of MyClass.
This is a property.

15. Generators
Generators are a special type of iterator in Python that allow you to iterate over a
sequence of values without storing the entire sequence in memory. They are defined
using functions and the yield keyword. Generators are particularly useful for working
with large datasets or infinite sequences.

What Are Generators?

A generator is a function that returns an iterator. Instead of using return to produce a
value, a generator uses yield . When a generator function is called, it returns a
generator object that can be iterated over.

Example:

def simple_generator():
 yield 1
 yield 2
 yield 3

Create a generator object
gen = simple_generator()

Iterate over the generator
for value in gen:
 print(value)

1
2
3

How Generators Work

1. When a generator function is called, it returns a generator object but does not start
execution.

2. The generator function runs until it encounters a yield statement, which produces
a value and pauses the function.

3. The function resumes execution from where it left off when the next value is
requested.

Advantages of Generators

Memory Efficiency: Generators produce values on-the-fly, so they don’t store the
entire sequence in memory.
Lazy Evaluation: Values are computed only when needed, making generators ideal
for large or infinite sequences.

Creating Generators

4. Using yield : Define a generator function using the yield keyword.

Example:

In [58]:

 def count_up_to(n):
 count = 1
 while count <= n:
 yield count
 count += 1

 # Create a generator object
 gen = count_up_to(5)

 # Iterate over the generator
 for value in gen:
 print(value)

1
2
3
4
5

5. Generator Expressions: Similar to list comprehensions, but use parentheses ()
instead of square brackets [] .

Example:

 gen = (x ** 2 for x in range(5))

 # Iterate over the generator
 for value in gen:
 print(value)

0
1
4
9
16

Infinite Generators

Generators can be used to create infinite sequences because they produce values on-
the-fly.

Example:

def infinite_sequence():
 num = 0
 while True:
 yield num
 num += 1

Create a generator object

In [61]:

In [64]:

In [67]:

gen = infinite_sequence()

Print the first 5 values
for _ in range(5):
 print(next(gen))

0
1
2
3
4

Sending Values to Generators

You can send values to a generator using the send() method. This allows two-way
communication between the generator and the caller.

Example:

def generator_with_send():
 value = yield
 yield f"Received: {value}"

Create a generator object
gen = generator_with_send()

Start the generator
next(gen)

Send a value to the generator
result = gen.send("Hello")
print(result)

Received: Hello

Example Program

Working with Generators

Simple generator
def simple_generator():
 yield 1
 yield 2
 yield 3

gen = simple_generator()
print("Simple Generator:")
for value in gen:
 print(value)

In [70]:

In [77]:

Generator with yield
def count_up_to(n):
 count = 1
 while count <= n:
 yield count
 count += 1

gen = count_up_to(5)
print("\nCount Up To 5:")
for value in gen:
 print(value)

Generator expression
gen = (x ** 2 for x in range(5))
print("\nGenerator Expression:")
for value in gen:
 print(value)

Infinite generator
def infinite_sequence():
 num = 0
 while True:
 yield num
 num += 1

gen = infinite_sequence()
print("\nInfinite Generator (First 5 Values):")
for _ in range(5):
 print(next(gen))

Sending values to a generator
def generator_with_send():
 value = yield
 yield f"Received: {value}"

gen = generator_with_send()
next(gen)
result = gen.send("Hello")
print("\nGenerator with Send:")
print(result)

Simple Generator:
1
2
3

Count Up To 5:
1
2
3
4
5

Generator Expression:
0
1
4
9
16

Infinite Generator (First 5 Values):
0
1
2
3
4

Generator with Send:
Received: Hello

16. Threading vs Multiprocessing
In Python, threading and multiprocessing are two approaches to achieve concurrency
and parallelism. They allow you to run multiple tasks simultaneously, but they work
differently and are suited for different types of problems.

What is Concurrency?

Concurrency is the ability of a program to manage multiple tasks at the same time. It
doesn’t necessarily mean that tasks are executed simultaneously; instead, the program
switches between tasks to make progress on all of them.

What is Parallelism?

Parallelism is the ability of a program to execute multiple tasks simultaneously, typically
by leveraging multiple CPU cores.

Threading

Threads are lightweight processes that share the same memory space.
Threading is suitable for I/O-bound tasks (e.g., reading/writing files, network
requests) where the program spends time waiting for external resources.
Python’s Global Interpreter Lock (GIL) prevents multiple threads from executing
Python bytecode simultaneously, which can limit the performance of CPU-bound
tasks.

Example:

import threading
import time

def print_numbers():
 for i in range(5):
 print(f"Thread 1: {i}")
 time.sleep(1)

def print_letters():
 for letter in "ABCDE":
 print(f"Thread 2: {letter}")
 time.sleep(1)

Create threads
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)

Start threads
thread1.start()
thread2.start()

Wait for threads to finish
thread1.join()
thread2.join()

print("Done!")

Thread 1: 0
Thread 2: A
Thread 1: 1
Thread 2: B
Thread 1: 2
Thread 2: C
Thread 1: 3
Thread 2: D
Thread 1: 4
Thread 2: E
Done!

Multiprocessing

In [80]:

Processes are independent instances of a program that run in separate memory
spaces.
Multiprocessing is suitable for CPU-bound tasks (e.g., mathematical computations)
where the program benefits from using multiple CPU cores.
Each process has its own Python interpreter and memory space, so the GIL is not a
limitation.

Example:

import multiprocessing
import time

def print_numbers():
 for i in range(5):
 print(f"Process 1: {i}")
 time.sleep(1)

def print_letters():
 for letter in "ABCDE":
 print(f"Process 2: {letter}")
 time.sleep(1)

Create processes
process1 = multiprocessing.Process(target=print_numbers)
process2 = multiprocessing.Process(target=print_letters)

Start processes
process1.start()
process2.start()

Wait for processes to finish
process1.join()
process2.join()

print("Done!")

Process 1: 0
Process 2: A
Process 1: 1
Process 2: B
Process 1: 2
Process 2: C
Process 1: 3
Process 2: D
Process 1: 4Process 2: E

Done!

Key Differences Between Threading and Multiprocessing

In [83]:

Feature Threading Multiprocessing

Memory Threads share the same memory
space. Processes have separate memory spaces.

GIL Affected by the GIL (limits CPU-
bound tasks). Not affected by the GIL.

Use Case Best for I/O-bound tasks. Best for CPU-bound tasks.

Overhead Low overhead. Higher overhead due to separate
memory spaces.

Scalability Limited by the GIL. Scales well with multiple CPU cores.

When to Use Threading vs Multiprocessing

Use Threading:

For I/O-bound tasks (e.g., file I/O, network requests).
When tasks involve waiting for external resources.
When you need to share data between tasks (since threads share memory).

Use Multiprocessing:

For CPU-bound tasks (e.g., mathematical computations).
When you need to leverage multiple CPU cores.
When tasks are independent and don’t need to share data.

Example Program

Working with Threading and Multiprocessing

import threading
import multiprocessing
import time

Threading example
def print_numbers():
 for i in range(5):
 print(f"Thread 1: {i}")
 time.sleep(1)

def print_letters():
 for letter in "ABCDE":
 print(f"Thread 2: {letter}")
 time.sleep(1)

print("Threading Example:")
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)

In [86]:

thread1.start()
thread2.start()

thread1.join()
thread2.join()
print("Threading Done!\n")

Multiprocessing example
def print_numbers():
 for i in range(5):
 print(f"Process 1: {i}")
 time.sleep(1)

def print_letters():
 for letter in "ABCDE":
 print(f"Process 2: {letter}")
 time.sleep(1)

print("Multiprocessing Example:")
process1 = multiprocessing.Process(target=print_numbers)
process2 = multiprocessing.Process(target=print_letters)

process1.start()
process2.start()

process1.join()
process2.join()
print("Multiprocessing Done!")

Threading Example:
Thread 1: 0
Thread 2: A
Thread 1: 1
Thread 2: B
Thread 1: 2
Thread 2: C
Thread 1: 3
Thread 2: D
Thread 1: 4
Thread 2: E
Threading Done!

Multiprocessing Example:
Process 1: 0
Process 2: A
Process 1: 1
Process 2: B
Process 1: 2
Process 2: C
Process 1: 3Process 2: D

Process 1: 4
Process 2: E
Multiprocessing Done!

17. Multithreading
Multithreading is a technique that allows a program to run multiple threads
concurrently. Threads are lightweight processes that share the same memory space,
making them ideal for I/O-bound tasks (e.g., file I/O, network requests) where the
program spends time waiting for external resources.

What is a Thread?

A thread is the smallest unit of execution within a process. Multiple threads can exist
within the same process and share resources such as memory and file handles.

Advantages of Multithreading

Concurrency: Allows multiple tasks to run concurrently, improving responsiveness.
Resource Sharing: Threads share the same memory space, making it easier to share
data between tasks.
Efficiency: Threads are lightweight compared to processes, so creating and
switching between threads is faster.

Limitations of Multithreading in Python

Global Interpreter Lock (GIL): Python’s GIL prevents multiple threads from
executing Python bytecode simultaneously, which can limit the performance of CPU-
bound tasks.
Thread Safety: Shared data between threads can lead to race conditions if not
properly synchronized.

Creating Threads

Python provides the threading module to work with threads. You can create a thread
by subclassing threading.Thread or by passing a target function to the
threading.Thread constructor.

Example:

import threading
import time

def print_numbers():
 for i in range(5):
 print(f"Thread 1: {i}")
 time.sleep(1)

def print_letters():
 for letter in "ABCDE":
 print(f"Thread 2: {letter}")
 time.sleep(1)

Create threads
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)

Start threads
thread1.start()
thread2.start()

Wait for threads to finish
thread1.join()
thread2.join()

print("Done!")

In [89]:

Thread 1: 0
Thread 2: A
Thread 1: 1
Thread 2: B
Thread 1: 2
Thread 2: C
Thread 1: 3
Thread 2: D
Thread 1: 4
Thread 2: E
Done!

Thread Synchronization

When multiple threads access shared resources, you need to synchronize their access to
avoid race conditions. Python provides several synchronization primitives, such as locks,
semaphores, and conditions.

Example: Using a Lock

import threading

Shared resource
counter = 0
lock = threading.Lock()

def increment():
 global counter
 for _ in range(100000):
 with lock:
 counter += 1

Create threads
thread1 = threading.Thread(target=increment)
thread2 = threading.Thread(target=increment)

Start threads
thread1.start()
thread2.start()

Wait for threads to finish
thread1.join()
thread2.join()

print("Counter:", counter) # Output: Counter: 200000

Counter: 200000

Daemon Threads

In [92]:

A daemon thread is a thread that runs in the background and does not prevent the
program from exiting. When the main program exits, all daemon threads are
automatically terminated.

Example:

import threading
import time

def daemon_task():
 while True:
 print("Daemon thread is running...")
 time.sleep(1)

Create a daemon thread
daemon_thread = threading.Thread(target=daemon_task, daemon=True)

Start the daemon thread
daemon_thread.start()

Main program
print("Main program is running...")
time.sleep(3)
print("Main program is done.")

Daemon thread is running...
Main program is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Main program is done.

Thread Pools

A thread pool is a collection of pre-initialized threads that are ready to perform tasks.
Python’s concurrent.futures module provides a ThreadPoolExecutor for
managing thread pools.

Example:

In [106…

from concurrent.futures import ThreadPoolExecutor
import time

def task(name):
 print(f"Task {name} started")
 time.sleep(2)
 print(f"Task {name} finished")

Create a thread pool with 3 threads
with ThreadPoolExecutor(max_workers=3) as executor:
 # Submit tasks to the thread pool
 futures = [executor.submit(task, i) for i in range(5)]

print("All tasks completed.")

Task 0 started
Task 1 started
Task 2 started
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Task 0 finished
Task 3 started
Task 1 finished
Task 4 started
Task 2 finished
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Task 3 finished
Task 4 finished
All tasks completed.

Example Program

Working with Multithreading

import threading
import time
from concurrent.futures import ThreadPoolExecutor

Basic threading example

In [108…

In [111…

def print_numbers():
 for i in range(5):
 print(f"Thread 1: {i}")
 time.sleep(1)

def print_letters():
 for letter in "ABCDE":
 print(f"Thread 2: {letter}")
 time.sleep(1)

print("Basic Threading Example:")
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)

thread1.start()
thread2.start()

thread1.join()
thread2.join()
print("Basic Threading Done!\n")

Thread synchronization example
counter = 0
lock = threading.Lock()

def increment():
 global counter
 for _ in range(100000):
 with lock:
 counter += 1

print("Thread Synchronization Example:")
thread1 = threading.Thread(target=increment)
thread2 = threading.Thread(target=increment)

thread1.start()
thread2.start()

thread1.join()
thread2.join()
print("Counter:", counter)
print("Thread Synchronization Done!\n")

Daemon thread example
def daemon_task():
 while True:
 print("Daemon thread is running...")
 time.sleep(1)

print("Daemon Thread Example:")
daemon_thread = threading.Thread(target=daemon_task, daemon=True)
daemon_thread.start()

print("Main program is running...")

time.sleep(3)
print("Main program is done.\n")

Thread pool example
def task(name):
 print(f"Task {name} started")
 time.sleep(2)
 print(f"Task {name} finished")

print("Thread Pool Example:")
with ThreadPoolExecutor(max_workers=3) as executor:
 futures = [executor.submit(task, i) for i in range(5)]

print("All tasks completed.")

Daemon thread is running...
Basic Threading Example:
Thread 1: 0
Thread 2: A
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 1
Thread 2: B
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 2
Thread 2: C
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 3
Thread 2: D
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 4
Thread 2: E
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Basic Threading Done!

Thread Synchronization Example:
Daemon thread is running...
Counter: 200000
Thread Synchronization Done!

Daemon Thread Example:
Daemon thread is running...
Main program is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...

Daemon thread is running...
Daemon thread is running...
Main program is done.

Thread Pool Example:
Task 0 started
Daemon thread is running...
Task 1 started
Task 2 started
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Task 0 finished
Task 3 started
Task 1 finished
Task 4 started
Daemon thread is running...
Task 2 finished
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Task 3 finished
Task 4 finished
Daemon thread is running...
All tasks completed.

18. Multiprocessing in Python
Multiprocessing is a Python module that allows you to create processes that can run
concurrently, taking advantage of multiple CPU cores. This is particularly useful for CPU-
bound tasks (tasks that require heavy computation) because it enables true parallel
execution, unlike threading, which is limited by Python's Global Interpreter Lock (GIL).

Key Concepts in Multiprocessing

1. Process: A process is an instance of a program that runs independently. Each
process has its own memory space, which means it doesn’t share data with other
processes by default.

2. Parallelism: Multiprocessing enables parallelism, where multiple tasks are executed
simultaneously on different CPU cores.

3. Inter-Process Communication (IPC): Processes can communicate with each other
using mechanisms like Queue , Pipe , or shared memory.

4. GIL (Global Interpreter Lock): The GIL prevents multiple threads from executing
Python bytecode simultaneously in a single process. Multiprocessing avoids this
limitation by using separate processes.

Basic Usage of Multiprocessing

To use the multiprocessing module, you typically follow these steps:

1. Import the multiprocessing module.
2. Define a function that will run in a separate process.
3. Create a Process object and specify the target function.
4. Start the process using the start() method.
5. Optionally, wait for the process to finish using the join() method.

Here’s an example:

import multiprocessing
import time

def worker_function(name):
 print(f"Process {name} started")
 time.sleep(2) # Simulate some work
 print(f"Process {name} finished")

if __name__ == "__main__":
 # Create two processes
 process1 = multiprocessing.Process(target=worker_function, args=("Process 1"
 process2 = multiprocessing.Process(target=worker_function, args=("Process 2"

 # Start the processes
 process1.start()
 process2.start()

 # Wait for the processes to finish
 process1.join()
 process2.join()

 print("All processes finished")

In [127…

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Process Process 1 started
Process Process 2 started
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Process Process 1 finished
Process Process 2 finished
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
All processes finished

Notice

there is " Daemon thread is running... " in the out put.

Why This Happens in Jupyter Notebook

Jupyter Notebooks run on an IPython kernel, which has its own event loop and threading
model. When you use the multiprocessing module, it can sometimes interfere with
the kernel's behavior, leading to unexpected output or behavior, such as the repeated
"Daemon thread is running..." messages.This could solved by restarting the kernel in
Jupyter Notebook.

Key Components of Multiprocessing

6. Process Class:

Used to create and manage processes.
Key methods:

start() : Starts the process.
join() : Waits for the process to complete.
is_alive() : Checks if the process is still running.

7. Queue :

A thread-safe way to share data between processes.
Example:

 import multiprocessing

 def worker(q):

In [130…

 q.put("Hello from the worker process!")

 if __name__ == "__main__":
 q = multiprocessing.Queue()
 p = multiprocessing.Process(target=worker, args=(q,))
 p.start()
 print(q.get()) # Output: Hello from the worker process!
 p.join()

Hello from the worker process!

8. Pool :
A pool of worker processes for parallel execution of a function across multiple
inputs.
Example:

 import multiprocessing

 def square(x):
 return x * x

 if __name__ == "__main__":
 with multiprocessing.Pool(processes=4) as pool:
 results = pool.map(square, range(10))
 print(results) # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

9. Pipe :
A two-way communication channel between processes.
Example:

 import multiprocessing

 def worker(conn):
 conn.send("Message from worker")
 conn.close()

 if __name__ == "__main__":
 parent_conn, child_conn = multiprocessing.Pipe()
 p = multiprocessing.Process(target=worker, args=(child_conn,))
 p.start()
 print(parent_conn.recv()) # Output: Message from worker
 p.join()

Daemon thread is running...
Message from worker
Daemon thread is running...

10. Shared Memory:

In [133…

In [136…

Allows processes to share data using Value and Array .
Example:

 import multiprocessing

 def worker(val):
 val.value += 1

 if __name__ == "__main__":
 shared_value = multiprocessing.Value("i", 0) # 'i' for integer
 p = multiprocessing.Process(target=worker, args=(shared_value,))
 p.start()
 p.join()
 print(shared_value.value) # Output: 1

1

Advantages of Multiprocessing

True parallel execution for CPU-bound tasks.
Avoids the GIL limitation.
Each process has its own memory space, reducing the risk of data corruption.

Disadvantages of Multiprocessing

Higher memory usage compared to threading.
Inter-process communication can be complex.
Slower to start compared to threads due to the overhead of creating new processes.

19. Function Arguments in Python
In Python, functions can accept arguments (also called parameters) to make them more
flexible and reusable. Understanding how to work with function arguments is essential
for writing clean and efficient code. Python supports several types of function arguments:

1. Positional Arguments
2. Keyword Arguments
3. Default Arguments
4. Variable-Length Arguments (*args and `kwargs`)**
5. Keyword-Only Arguments
6. Positional-Only Arguments (Python 3.8+)

Let’s explore each of these in detail.

1. Positional Arguments

In [139…

Positional arguments are the most common type of arguments. They are passed to a
function in the order they are defined.

def greet(name, message):
 print(f"{message}, {name}!")

greet("Alice", "Hello") # Output: Hello, Alice!

Hello, Alice!

The order of arguments matters. "Alice" is assigned to name , and "Hello" is
assigned to message .

2. Keyword Arguments

Keyword arguments are passed with a keyword (i.e., the parameter name) and can be in
any order.

greet(message="Hi", name="Bob") # Output: Hi, Bob!

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Hi, Bob!

Here, the order doesn’t matter because the arguments are explicitly named.

3. Default Arguments

Default arguments allow you to define a default value for a parameter. If the caller
doesn’t provide a value, the default is used.

def greet(name, message="Hello"):
 print(f"{message}, {name}!")

greet("Alice") # Output: Hello, Alice!
greet("Bob", "Hi") # Output: Hi, Bob!

Daemon thread is running...
Daemon thread is running...
Hello, Alice!
Hi, Bob!

message has a default value of "Hello" , so it’s optional.

Note: Default arguments are evaluated only once when the function is defined, not each
time the function is called. Be careful with mutable default arguments (e.g., lists or

In [142…

In [145…

In [148…

dictionaries).

4. Variable-Length Arguments

Python allows you to handle an arbitrary number of arguments using *args and
**kwargs .

*args : Used to pass a variable number of positional arguments. It collects them
into a tuple.
`kwargs`**: Used to pass a variable number of keyword arguments. It collects them
into a dictionary.

Example with *args :

def add(*args):
 return sum(args)

print(add(1, 2, 3)) # Output: 6
print(add(4, 5, 6, 7)) # Output: 22

Daemon thread is running...
Daemon thread is running...
6
22

Example with `kwargs`:**

def display_info(**kwargs):
 for key, value in kwargs.items():
 print(f"{key}: {value}")

display_info(name="Alice", age=30, city="New York")
Output:
name: Alice
age: 30
city: New York

name: Alice
age: 30
city: New York

5. Keyword-Only Arguments

Keyword-only arguments are arguments that can only be passed using the keyword
syntax. They are defined after a * in the function signature.

def greet(*, name, message):
 print(f"{message}, {name}!")

In [151…

In [154…

In [157…

greet(name="Alice", message="Hi") # Output: Hi, Alice!
greet("Alice", "Hi") # This would raise a TypeError

Hi, Alice!

The * enforces that all arguments after it must be passed as keyword arguments.

6. Positional-Only Arguments (Python 3.8+)

Positional-only arguments are arguments that can only be passed by position. They are
defined before a / in the function signature.

def greet(name, /, message):
 print(f"{message}, {name}!")

greet("Alice", message="Hi") # Output: Hi, Alice!
greet(name="Alice", message="Hi") # This would raise a TypeError

Hi, Alice!

The / enforces that all arguments before it must be passed as positional
arguments.

Combining All Types of Arguments

You can combine all these types of arguments in a single function. The order of
parameters must follow this rule:

1. Positional-only arguments (before /).
2. Regular positional arguments.
3. *args (variable-length positional arguments).
4. Keyword-only arguments (after *).
5. **kwargs (variable-length keyword arguments).

Example:

def example(a, b, /, c, d=4, *args, e, f=6, **kwargs):
 print(f"a: {a}, b: {b}, c: {c}, d: {d}, args: {args}, e: {e}, f: {f}, kwargs

example(1, 2, 3, e=5, extra="hello")
Output:
a: 1, b: 2, c: 3, d: 4, args: (), e: 5, f: 6, kwargs: {'extra': 'hello'}

a: 1, b: 2, c: 3, d: 4, args: (), e: 5, f: 6, kwargs: {'extra': 'hello'}

Best Practices for Function Arguments

In [160…

In [163…

Use descriptive names for parameters to improve readability.
Avoid mutable default arguments (e.g., def func(arg=[])) to prevent
unexpected behavior.
Use *args and **kwargs sparingly, as they can make the function signature less
clear.
Use keyword-only arguments to enforce clarity and prevent misuse.

20. The Asterisk (*) Operator in Python

The asterisk (*) operator is a versatile symbol in Python with multiple uses depending
on the context. Here are the main ways it is used:

1. Multiplication and Exponentiation
2. Unpacking Iterables
3. Extended Unpacking (Python 3+)
4. Variable-Length Arguments in Functions (*args)
5. Unpacking in Function Calls
6. Keyword Argument Unpacking (``)**
7. Keyword-Only Arguments in Functions

Let’s explore each of these in detail.

1. Multiplication and Exponentiation

The * operator is used for multiplication and the ** operator is used for
exponentiation.

Multiplication
result = 5 * 3
print(result) # Output: 15

Exponentiation
result = 2 ** 3
print(result) # Output: 8

15
8

2. Unpacking Iterables

The * operator can be used to unpack iterables (e.g., lists, tuples) into individual
elements.

In [167…

numbers = [1, 2, 3]
print(*numbers) # Output: 1 2 3

1 2 3

This is equivalent to:

print(1, 2, 3)

1 2 3

3. Extended Unpacking (Python 3+)

Python 3 introduced extended unpacking, which allows you to unpack parts of an
iterable.

first, *middle, last = [1, 2, 3, 4, 5]
print(first) # Output: 1
print(middle) # Output: [2, 3, 4]
print(last) # Output: 5

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
1
[2, 3, 4]
5

*middle captures all the elements between the first and last elements.

4. Variable-Length Arguments in Functions (*args)

The * operator is used in function definitions to accept a variable number of
positional arguments. These arguments are collected into a tuple.

def sum_numbers(*args):
 return sum(args)

print(sum_numbers(1, 2, 3)) # Output: 6
print(sum_numbers(4, 5, 6, 7)) # Output: 22

6
22

*args allows the function to accept any number of positional arguments.

5. Unpacking in Function Calls

In [170…

In [175…

In [178…

In [181…

The * operator can be used to unpack an iterable into individual arguments when
calling a function.

def greet(name, message):
 print(f"{message}, {name}!")

data = ["Alice", "Hello"]
greet(*data) # Output: Hello, Alice!

Hello, Alice!

*data unpacks the list into two arguments: name="Alice" and
message="Hello" .

6. Keyword Argument Unpacking (``)**

The ** operator is used to unpack a dictionary into keyword arguments.

def greet(name, message):
 print(f"{message}, {name}!")

data = {"name": "Bob", "message": "Hi"}
greet(**data) # Output: Hi, Bob!

Hi, Bob!

**data unpacks the dictionary into keyword arguments: name="Bob" and
message="Hi" .

7. Keyword-Only Arguments in Functions

The * operator can be used in function definitions to enforce keyword-only
arguments. Arguments after * must be passed as keyword arguments.

def greet(*, name, message):
 print(f"{message}, {name}!")

greet(name="Alice", message="Hi") # Output: Hi, Alice!
greet("Alice", "Hi") # This would raise a TypeError

Hi, Alice!

The * ensures that name and message must be passed as keyword arguments.

Combining * and `` in Function Calls**

You can combine * and ** to unpack both positional and keyword arguments.

In [184…

In [1]:

In [4]:

def func(a, b, c):
 print(f"a: {a}, b: {b}, c: {c}")

args = [1, 2]
kwargs = {"c": 3}
func(*args, **kwargs) # Output: a: 1, b: 2, c: 3

a: 1, b: 2, c: 3

Summary of Uses

Use Case Example

Multiplication 5 * 3 → 15

Exponentiation 2 ** 3 → 8

Unpacking iterables print(*[1, 2, 3]) → 1 2 3

Extended unpacking first, *middle, last = [1, 2, 3, 4, 5]

Variable-length arguments (*args) def func(*args): ...

Unpacking in function calls func(*[1, 2, 3])

Keyword argument unpacking (**) func(**{"a": 1, "b": 2})

Keyword-only arguments def func(*, a, b): ...

21. Shallow vs Deep Copying in Python
In Python, copying objects is a common operation, but it’s important to understand the
difference between shallow copying and deep copying. The behavior of these
operations depends on whether the object contains mutable or immutable elements.

Key Concepts

1. Mutable vs Immutable Objects:

Mutable objects: Objects whose state can be changed after creation (e.g., lists,
dictionaries, sets).
Immutable objects: Objects whose state cannot be changed after creation (e.g.,
integers, strings, tuples).

2. Assignment:

In [8]:

When you assign an object to a new variable, both variables reference the same
object in memory.
Changes to the object through one variable will affect the other.

3. Shallow Copy:

Creates a new object but inserts references to the original nested objects.
Changes to mutable nested objects will affect both the original and the copy.

4. Deep Copy:

Creates a new object and recursively copies all nested objects.
Changes to mutable nested objects will not affect the original or the copy.

Shallow Copy

A shallow copy creates a new object but does not recursively copy nested objects.
Instead, it inserts references to the original nested objects.

How to Create a Shallow Copy:

Use the copy() method (for lists, dictionaries, etc.).
Use the copy.copy() function from the copy module.

Example:

import copy

original = [[1, 2, 3], [4, 5, 6]]
shallow_copy = copy.copy(original)

Modify the nested list in the shallow copy
shallow_copy[0][0] = 99

print(original) # Output: [[99, 2, 3], [4, 5, 6]]
print(shallow_copy) # Output: [[99, 2, 3], [4, 5, 6]]

[[99, 2, 3], [4, 5, 6]]
[[99, 2, 3], [4, 5, 6]]

Notice that modifying the nested list in the shallow copy also affects the original.

Deep Copy

A deep copy creates a new object and recursively copies all nested objects, ensuring that
no references to the original nested objects are retained.

How to Create a Deep Copy:

In [12]:

Use the copy.deepcopy() function from the copy module.

Example:

import copy

original = [[1, 2, 3], [4, 5, 6]]
deep_copy = copy.deepcopy(original)

Modify the nested list in the deep copy
deep_copy[0][0] = 99

print(original) # Output: [[1, 2, 3], [4, 5, 6]]
print(deep_copy) # Output: [[99, 2, 3], [4, 5, 6]]

[[1, 2, 3], [4, 5, 6]]
[[99, 2, 3], [4, 5, 6]]

Notice that modifying the nested list in the deep copy does not affect the original.

When to Use Shallow Copy vs Deep Copy

Use Case Shallow Copy Deep Copy

Object contains only
immutable elements

Use shallow copy (no difference
in behavior).

Use deep copy (no difference in
behavior).

Object contains
mutable nested
objects

Use shallow copy if you want
changes to nested objects to
affect the original.

Use deep copy if you want
changes to nested objects to
not affect the original.

Performance Faster (less memory and
computation).

Slower (more memory and
computation due to recursive
copying).

Practical Examples

Example 1: Shallow Copy with a List of Lists

import copy

original = [[1, 2], [3, 4]]
shallow_copy = copy.copy(original)

shallow_copy[0][0] = 99
print(original) # Output: [[99, 2], [3, 4]]
print(shallow_copy) # Output: [[99, 2], [3, 4]]

[[99, 2], [3, 4]]
[[99, 2], [3, 4]]

In [15]:

In [18]:

Example 2: Deep Copy with a List of Lists

import copy

original = [[1, 2], [3, 4]]
deep_copy = copy.deepcopy(original)

deep_copy[0][0] = 99
print(original) # Output: [[1, 2], [3, 4]]
print(deep_copy) # Output: [[99, 2], [3, 4]]

[[1, 2], [3, 4]]
[[99, 2], [3, 4]]

Example 3: Shallow Copy with a Dictionary

import copy

original = {"a": [1, 2], "b": [3, 4]}
shallow_copy = copy.copy(original)

shallow_copy["a"][0] = 99
print(original) # Output: {'a': [99, 2], 'b': [3, 4]}
print(shallow_copy) # Output: {'a': [99, 2], 'b': [3, 4]}

{'a': [99, 2], 'b': [3, 4]}
{'a': [99, 2], 'b': [3, 4]}

Example 4: Deep Copy with a Dictionary

import copy

original = {"a": [1, 2], "b": [3, 4]}
deep_copy = copy.deepcopy(original)

deep_copy["a"][0] = 99
print(original) # Output: {'a': [1, 2], 'b': [3, 4]}
print(deep_copy) # Output: {'a': [99, 2], 'b': [3, 4]}

{'a': [1, 2], 'b': [3, 4]}
{'a': [99, 2], 'b': [3, 4]}

Summary

Aspect Shallow Copy Deep Copy

Copies nested
objects? No (references are shared). Yes (recursively copies nested

objects).

Performance Faster. Slower.

Use Case When nested objects are
immutable or shared references are

When nested objects are mutable
and independent copies are

In [21]:

In [24]:

In [27]:

Aspect Shallow Copy Deep Copy

acceptable. needed.

22. Context Managers in Python
Context managers are a way to manage resources (e.g., files, database connections,
locks) in Python. They ensure that resources are properly acquired and released, even if
an exception occurs. The most common use of context managers is with the with
statement.

Key Concepts

1. Resource Management:

Resources like files, network connections, or locks need to be properly
opened/acquired and closed/released.
Failing to release resources can lead to leaks, which can cause performance
issues or crashes.

2. Context Manager Protocol:

A context manager is an object that implements the __enter__ and
__exit__ methods.

The __enter__ method is called when entering the with block.
The __exit__ method is called when exiting the with block, even if an
exception occurs.

3. The with Statement:

The with statement simplifies resource management by automatically calling
the __enter__ and __exit__ methods.

Using Context Managers

The most common example of a context manager is working with files. Instead of
manually opening and closing a file, you can use the with statement to ensure the file
is properly closed.

Example: File Handling with with

Without context manager
file = open("example.txt", "w")
file.write("Hello, World!")
file.close() # Must remember to close the file

In [32]:

With context manager
with open("example.txt", "w") as file:
 file.write("Hello, World!")
File is automatically closed when the block is exited

The with statement ensures that the file is closed, even if an exception occurs
within the block.

Creating Custom Context Managers

You can create your own context managers by defining a class with __enter__ and
__exit__ methods.

Example: Custom Context Manager

class MyContextManager:
 def __enter__(self):
 print("Entering the context")
 return self # Optional: Return an object to use in the `with` block

 def __exit__(self, exc_type, exc_value, traceback):
 print("Exiting the context")
 if exc_type is not None:
 print(f"An exception occurred: {exc_value}")
 # Return True to suppress the exception, False to propagate it
 return False

Using the custom context manager
with MyContextManager() as cm:
 print("Inside the context")
 # raise ValueError("Something went wrong") # Uncomment to test exception ha

Entering the context
Inside the context
Exiting the context

If an exception occurs, the __exit__ method is still called, and you can handle the
exception within it.

Using contextlib for Simpler Context Managers

The contextlib module provides utilities for creating context managers without
defining a class. The most common utility is contextlib.contextmanager , which
allows you to create a context manager using a generator function.

Example: Context Manager with contextlib

In [35]:

from contextlib import contextmanager

@contextmanager
def my_context_manager():
 print("Entering the context")
 try:
 yield # The block inside the `with` statement runs here
 except Exception as e:
 print(f"An exception occurred: {e}")
 finally:
 print("Exiting the context")

Using the context manager
with my_context_manager():
 print("Inside the context")
 # raise ValueError("Something went wrong") # Uncomment to test exception ha

Entering the context
Inside the context
Exiting the context

Common Use Cases for Context Managers

4. File Handling:
Automatically close files after reading or writing.

 with open("example.txt", "r") as file:
 content = file.read()

5. Database Connections:
Automatically close database connections.

 with db_connection() as conn:
 cursor = conn.cursor()
 cursor.execute("SELECT * FROM table")

6. Locks in Multithreading:
Automatically release locks.

 with threading.Lock():
 # Critical section
 pass

7. Temporary Changes:
Temporarily change the state (e.g., redirecting stdout).

In [38]:

In [43]:

In []:

In []:

 from contextlib import redirect_stdout
 import io

 f = io.StringIO()
 with redirect_stdout(f):
 print("This goes to the buffer")
 print(f.getvalue()) # Output: This goes to the buffer

This goes to the buffer

Advantages of Context Managers

Resource Safety: Ensures resources are properly released, even if an exception
occurs.
Readability: Makes code cleaner and easier to understand.
Reusability: Context managers can be reused across different parts of the code.

Summary

Aspect Details

Purpose Manage resources (e.g., files, locks) safely and efficiently.

Syntax with context_manager as variable: ...

Built-in Context
Managers

open() , threading.Lock() ,
contextlib.redirect_stdout() , etc.

Custom Context
Managers

Implement __enter__ and __exit__ methods or use
contextlib.contextmanager .

Exception Handling The __exit__ method can handle exceptions raised in the with
block.

In [52]:

